BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 1527044)

  • 1. A structural study of the membrane domain of band 3 by tryptic digestion. Conformational change of band 3 in situ induced by alkali treatment.
    Kang D; Okubo K; Hamasaki N; Kuroda N; Shiraki H
    J Biol Chem; 1992 Sep; 267(27):19211-7. PubMed ID: 1527044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the eosinyl-5-maleimide reaction site on the human erythrocyte anion-exchange protein: overlap with the reaction sites of other chemical probes.
    Cobb CE; Beth AH
    Biochemistry; 1990 Sep; 29(36):8283-90. PubMed ID: 1701324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of human erythrocyte Band 3 with cytoskeletal components.
    Hsu L; Morrison M
    Arch Biochem Biophys; 1983 Nov; 227(1):31-8. PubMed ID: 6685459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pepsin cleavage of band 3 produces its membrane-crossing domains.
    Ramjeesingh M; Gaarn A; Rothstein A
    Biochim Biophys Acta; 1984 Jan; 769(2):381-9. PubMed ID: 6421317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport.
    Salhany JM; Sloan RL; Cordes KS
    Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteolytic cleavage sites of band 3 protein in alkali-treated membranes: fidelity of hydropathy prediction for band 3 protein.
    Hamasaki N; Okubo K; Kuma H; Kang D; Yae Y
    J Biochem; 1997 Sep; 122(3):577-85. PubMed ID: 9348087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of the rainbow trout erythrocyte band-3 protein.
    Michel F; Rudloff V
    Eur J Biochem; 1989 Apr; 181(1):181-7. PubMed ID: 2714277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of stilbenedisulfonate binding on the state of association of the membrane-spanning domain of band 3 from bovine erythrocyte membrane.
    Tomida M; Kondo Y; Moriyama R; Machida H; Makino S
    Biochim Biophys Acta; 1988 Sep; 943(3):493-500. PubMed ID: 3415991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Major proteolytic fragments of the murine band 3 protein as obtained after in situ proteolysis.
    Raida M; Wendel J; Kojro E; Fahrenholz F; Fasold H; Legrum B; Passow H
    Biochim Biophys Acta; 1989 Apr; 980(3):291-8. PubMed ID: 2713407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structural study of the carboxyl terminal region of the human erythrocyte band 3 protein.
    Mori A; Okubo K; Kang D; Hamasaki N
    J Biochem; 1995 Dec; 118(6):1192-8. PubMed ID: 8720134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational change of band 3 protein induced by diethyl pyrocarbonate modification in human erythrocyte ghosts.
    Izuhara K; Okubo K; Hamasaki N
    Biochemistry; 1989 May; 28(11):4725-8. PubMed ID: 2765508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The kinetics of intramolecular cross-linking of the band 3 protein in the red blood cell membrane by 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid (H2DIDS).
    Kampmann L; Lepke S; Fasold H; Fritzsch G; Passow H
    J Membr Biol; 1982; 70(3):199-216. PubMed ID: 7186941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane helix-helix interactions and accessibility of H2DIDS on labelled band 3, the erythrocyte anion exchange protein.
    Landolt-Marticorena C; Casey JR; Reithmeier RA
    Mol Membr Biol; 1995; 12(2):173-82. PubMed ID: 7795708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a membrane protein from T84 cells using antibodies made against a DIDS-binding peptide.
    Sorscher EJ; Fuller CM; Bridges RJ; Tousson A; Marchase RB; Brinkley BR; Frizzell RA; Benos DJ
    Am J Physiol; 1992 Jan; 262(1 Pt 1):C136-47. PubMed ID: 1310206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monoclonal antibodies against human erythrocyte band 3 protein. Localization of proteolytic cleavage sites and stilbenedisulfonate-binding lysine residues.
    Jennings ML; Anderson MP; Monaghan R
    J Biol Chem; 1986 Jul; 261(19):9002-10. PubMed ID: 3087983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the stilbenedisulphonate binding site on band 3 Memphis variant II (Pro-854-->Leu).
    Salhany JM; Sloan RL; Schopfer LM
    Biochem J; 1996 Jul; 317 ( Pt 2)(Pt 2):509-14. PubMed ID: 8713079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification, purification, and characterization of a stilbenedisulfonate binding glycoprotein from canine kidney brush border membranes. A candidate for a renal anion exchanger.
    Pimplikar SW; Reithmeier RA
    J Biol Chem; 1988 Mar; 263(9):4485-93. PubMed ID: 3346257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AE2 anion exchanger polypeptide is a homooligomer in pig gastric membranes: a chemical cross-linking study.
    Zolotarev AS; Shmukler BE; Alper SL
    Biochemistry; 1999 Jun; 38(26):8521-31. PubMed ID: 10387099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The location of a chymotrypsin cleavage site and of other sites in the primary structure of the 17,000-dalton transmembrane segment of band 3, the anion transport protein of red cell.
    Ramjeesingh M; Rothstein A
    Membr Biochem; 1982; 4(4):259-69. PubMed ID: 7176932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein.
    Bjerrum PJ; Wieth JO; Borders CL
    J Gen Physiol; 1983 Apr; 81(4):453-84. PubMed ID: 6854266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.