BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 1527087)

  • 1. Biosynthesis of all-trans-retinoic acid from retinal. Recognition of retinal bound to cellular retinol binding protein (type I) as substrate by a purified cytosolic dehydrogenase.
    Posch KC; Burns RD; Napoli JL
    J Biol Chem; 1992 Sep; 267(27):19676-82. PubMed ID: 1527087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rat liver cytosolic retinal dehydrogenase: comparison of 13-cis-, 9-cis-, and all-trans-retinal as substrates and effects of cellular retinoid-binding proteins and retinoic acid on activity.
    el Akawi Z; Napoli JL
    Biochemistry; 1994 Feb; 33(7):1938-43. PubMed ID: 8110799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular retinol-binding protein-supported retinoic acid synthesis. Relative roles of microsomes and cytosol.
    Boerman MH; Napoli JL
    J Biol Chem; 1996 Mar; 271(10):5610-6. PubMed ID: 8621422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Holocellular retinol binding protein as a substrate for microsomal retinal synthesis.
    Posch KC; Boerman MH; Burns RD; Napoli JL
    Biochemistry; 1991 Jun; 30(25):6224-30. PubMed ID: 2059629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis and metabolism of retinoic acid: roles of CRBP and CRABP in retinoic acid: roles of CRBP and CRABP in retinoic acid homeostasis.
    Napoli JL
    J Nutr; 1993 Feb; 123(2 Suppl):362-6. PubMed ID: 8381481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinol bound to cellular retinol-binding protein is a substrate for cytosolic retinoic acid synthesis.
    Ottonello S; Scita G; Mantovani G; Cavazzini D; Rossi GL
    J Biol Chem; 1993 Dec; 268(36):27133-42. PubMed ID: 8262951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sulfhydryl reagents, retinoids, and solubilization on the activity of microsomal retinol dehydrogenase.
    Boerman MH; Napoli JL
    Arch Biochem Biophys; 1995 Aug; 321(2):434-41. PubMed ID: 7646070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of a novel cytosolic NADP(H)-dependent retinol oxidoreductase from rabbit liver.
    Huang DY; Ichikawa Y
    Biochim Biophys Acta; 1997 Mar; 1338(1):47-59. PubMed ID: 9074615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The regulation of retinoic acid formation.
    Wolf G
    Nutr Rev; 1996 Jun; 54(6):182-4. PubMed ID: 8810827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microsomes convert retinol and retinal into retinoic acid and interfere in the conversions catalyzed by cytosol.
    Napoli JL; Race KR
    Biochim Biophys Acta; 1990 May; 1034(2):228-32. PubMed ID: 2354194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymes and binding proteins affecting retinoic acid concentrations.
    Napoli JL; Boerman MH; Chai X; Zhai Y; Fiorella PD
    J Steroid Biochem Mol Biol; 1995 Jun; 53(1-6):497-502. PubMed ID: 7626500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential recognition of the free versus bound retinol by human microsomal retinol/sterol dehydrogenases: characterization of the holo-CRBP dehydrogenase activity of RoDH-4.
    Lapshina EA; Belyaeva OV; Chumakova OV; Kedishvili NY
    Biochemistry; 2003 Jan; 42(3):776-84. PubMed ID: 12534290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning of a rat cDNA encoding retinal dehydrogenase isozyme type I and its expression in E. coli.
    Penzes P; Wang X; Sperkova Z; Napoli JL
    Gene; 1997 Jun; 191(2):167-72. PubMed ID: 9218716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological occurrence, biosynthesis and metabolism of retinoic acid: evidence for roles of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) in the pathway of retinoic acid homeostasis.
    Napoli JL; Posch KP; Fiorella PD; Boerman MH
    Biomed Pharmacother; 1991; 45(4-5):131-43. PubMed ID: 1932598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of retinaldehyde and other aldehydes in soluble extracts of human liver and kidney.
    Ambroziak W; Izaguirre G; Pietruszko R
    J Biol Chem; 1999 Nov; 274(47):33366-73. PubMed ID: 10559215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of retinaldehyde bound to cellular retinol-binding protein (type II) by microsomes from rat small intestine.
    Kakkad BP; Ong DE
    J Biol Chem; 1988 Sep; 263(26):12916-9. PubMed ID: 3417642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic characteristics of retinal dehydrogenase type I expressed in Escherichia coli.
    Penzes P; Wang X; Napoli JL
    Biochim Biophys Acta; 1997 Oct; 1342(2):175-81. PubMed ID: 9392526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro formation of retinoic acid from retinal in rat liver.
    Hupert J; Mobarhan S; Layden TJ; Papa VM; Lucchesi DJ
    Biochem Cell Biol; 1991 Aug; 69(8):509-14. PubMed ID: 1760155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsomal retinal synthesis: retinol vs. holo-CRBP as substrate and evaluation of NADP, NAD and NADPH as cofactors.
    Napoli JL; Posch KC; Burns RD
    Biochim Biophys Acta; 1992 Apr; 1120(2):183-6. PubMed ID: 1562584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aldo-keto reductases in retinoid metabolism: search for substrate specificity and inhibitor selectivity.
    Porté S; Xavier Ruiz F; Giménez J; Molist I; Alvarez S; Domínguez M; Alvarez R; de Lera AR; Parés X; Farrés J
    Chem Biol Interact; 2013 Feb; 202(1-3):186-94. PubMed ID: 23220004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.