BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 1527174)

  • 1. Membrane protein sorting in the yeast secretory pathway: evidence that the vacuole may be the default compartment.
    Roberts CJ; Nothwehr SF; Stevens TH
    J Cell Biol; 1992 Oct; 119(1):69-83. PubMed ID: 1527174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane protein retention in the yeast Golgi apparatus: dipeptidyl aminopeptidase A is retained by a cytoplasmic signal containing aromatic residues.
    Nothwehr SF; Roberts CJ; Stevens TH
    J Cell Biol; 1993 Jun; 121(6):1197-209. PubMed ID: 8509444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, biosynthesis, and localization of dipeptidyl aminopeptidase B, an integral membrane glycoprotein of the yeast vacuole.
    Roberts CJ; Pohlig G; Rothman JH; Stevens TH
    J Cell Biol; 1989 Apr; 108(4):1363-73. PubMed ID: 2647766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrieval of resident late-Golgi membrane proteins from the prevacuolar compartment of Saccharomyces cerevisiae is dependent on the function of Grd19p.
    Voos W; Stevens TH
    J Cell Biol; 1998 Feb; 140(3):577-90. PubMed ID: 9456318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast Kex1p is a Golgi-associated membrane protein: deletions in a cytoplasmic targeting domain result in mislocalization to the vacuolar membrane.
    Cooper A; Bussey H
    J Cell Biol; 1992 Dec; 119(6):1459-68. PubMed ID: 1469044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Golgi to vacuole delivery pathway in yeast: identification of a sorting determinant and required transport component.
    Cowles CR; Snyder WB; Burd CG; Emr SD
    EMBO J; 1997 May; 16(10):2769-82. PubMed ID: 9184222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective and immediate effects of clathrin heavy chain mutations on Golgi membrane protein retention in Saccharomyces cerevisiae.
    Seeger M; Payne GS
    J Cell Biol; 1992 Aug; 118(3):531-40. PubMed ID: 1322413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two separate signals act independently to localize a yeast late Golgi membrane protein through a combination of retrieval and retention.
    Bryant NJ; Stevens TH
    J Cell Biol; 1997 Jan; 136(2):287-97. PubMed ID: 9015300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dileucine-like sorting signal directs transport into an AP-3-dependent, clathrin-independent pathway to the yeast vacuole.
    Vowels JJ; Payne GS
    EMBO J; 1998 May; 17(9):2482-93. PubMed ID: 9564031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation of a tyrosine localization signal in the cytosolic tail of yeast Kex2 protease disrupts Golgi retention and results in default transport to the vacuole.
    Wilcox CA; Redding K; Wright R; Fuller RS
    Mol Biol Cell; 1992 Dec; 3(12):1353-71. PubMed ID: 1493334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane.
    Nothwehr SF; Conibear E; Stevens TH
    J Cell Biol; 1995 Apr; 129(1):35-46. PubMed ID: 7698993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole.
    Cowles CR; Odorizzi G; Payne GS; Emr SD
    Cell; 1997 Oct; 91(1):109-18. PubMed ID: 9335339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast vacuolar proenzymes are sorted in the late Golgi complex and transported to the vacuole via a prevacuolar endosome-like compartment.
    Vida TA; Huyer G; Emr SD
    J Cell Biol; 1993 Jun; 121(6):1245-56. PubMed ID: 8509446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endoplasmic reticulum localization of Sec12p is achieved by two mechanisms: Rer1p-dependent retrieval that requires the transmembrane domain and Rer1p-independent retention that involves the cytoplasmic domain.
    Sato M; Sato K; Nakano A
    J Cell Biol; 1996 Jul; 134(2):279-93. PubMed ID: 8707815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The yeast adaptor protein complex, AP-3, is essential for the efficient delivery of alkaline phosphatase by the alternate pathway to the vacuole.
    Stepp JD; Huang K; Lemmon SK
    J Cell Biol; 1997 Dec; 139(7):1761-74. PubMed ID: 9412470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polar transmembrane domains target proteins to the interior of the yeast vacuole.
    Reggiori F; Black MW; Pelham HR
    Mol Biol Cell; 2000 Nov; 11(11):3737-49. PubMed ID: 11071903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization and targeting of the Saccharomyces cerevisiae Kre2p/Mnt1p alpha 1,2-mannosyltransferase to a medial-Golgi compartment.
    Lussier M; Sdicu AM; Ketela T; Bussey H
    J Cell Biol; 1995 Nov; 131(4):913-27. PubMed ID: 7490293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies.
    Reggiori F; Pelham HR
    Nat Cell Biol; 2002 Feb; 4(2):117-23. PubMed ID: 11788821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole.
    Darsow T; Rieder SE; Emr SD
    J Cell Biol; 1997 Aug; 138(3):517-29. PubMed ID: 9245783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmembrane domain-dependent sorting of proteins to the ER and plasma membrane in yeast.
    Rayner JC; Pelham HR
    EMBO J; 1997 Apr; 16(8):1832-41. PubMed ID: 9155009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.