These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 1527174)

  • 41. Role of Vac8 in formation of the vacuolar sequestering membrane during micropexophagy.
    Oku M; Nishimura T; Hattori T; Ano Y; Yamashita S; Sakai Y
    Autophagy; 2006; 2(4):272-9. PubMed ID: 16874085
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast.
    Gaynor EC; te Heesen S; Graham TR; Aebi M; Emr SD
    J Cell Biol; 1994 Nov; 127(3):653-65. PubMed ID: 7962050
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ykt6p is a multifunctional yeast R-SNARE that is required for multiple membrane transport pathways to the vacuole.
    Kweon Y; Rothe A; Conibear E; Stevens TH
    Mol Biol Cell; 2003 May; 14(5):1868-81. PubMed ID: 12802061
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Demonstration in yeast of the function of BP-80, a putative plant vacuolar sorting receptor.
    Humair D; Hernández Felipe D; Neuhaus JM; Paris N
    Plant Cell; 2001 Apr; 13(4):781-92. PubMed ID: 11283336
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein targeting to the yeast vacuole.
    Rothman JH; Yamashiro CT; Kane PM; Stevens TH
    Trends Biochem Sci; 1989 Aug; 14(8):347-50. PubMed ID: 2529676
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Localization of Sed5, a putative vesicle targeting molecule, to the cis-Golgi network involves both its transmembrane and cytoplasmic domains.
    Banfield DK; Lewis MJ; Rabouille C; Warren G; Pelham HR
    J Cell Biol; 1994 Oct; 127(2):357-71. PubMed ID: 7929581
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct binding to Rsp5p regulates ubiquitination-independent vacuolar transport of Sna3p.
    Watson H; Bonifacino JS
    Mol Biol Cell; 2007 May; 18(5):1781-9. PubMed ID: 17332499
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Traffic into the prevacuolar/endosomal compartment of Saccharomyces cerevisiae: a VPS45-dependent intracellular route and a VPS45-independent, endocytic route.
    Bryant NJ; Piper RC; Gerrard SR; Stevens TH
    Eur J Cell Biol; 1998 May; 76(1):43-52. PubMed ID: 9650782
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A short domain of the plant vacuolar protein phytohemagglutinin targets invertase to the yeast vacuole.
    Tague BW; Dickinson CD; Chrispeels MJ
    Plant Cell; 1990 Jun; 2(6):533-46. PubMed ID: 2152175
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting.
    Banta LM; Robinson JS; Klionsky DJ; Emr SD
    J Cell Biol; 1988 Oct; 107(4):1369-83. PubMed ID: 3049619
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast.
    Stack JH; DeWald DB; Takegawa K; Emr SD
    J Cell Biol; 1995 Apr; 129(2):321-34. PubMed ID: 7721937
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transport of proteins to the yeast vacuole: autophagy, cytoplasm-to-vacuole targeting, and role of the vacuole in degradation.
    Teter SA; Klionsky DJ
    Semin Cell Dev Biol; 2000 Jun; 11(3):173-9. PubMed ID: 10906274
    [TBL] [Abstract][Full Text] [Related]  

  • 53. AtRMR1 functions as a cargo receptor for protein trafficking to the protein storage vacuole.
    Park M; Lee D; Lee GJ; Hwang I
    J Cell Biol; 2005 Aug; 170(5):757-67. PubMed ID: 16115960
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lumenal endosomal and Golgi-retrieval determinants involved in pH-sensitive targeting of an early Golgi protein.
    Bachert C; Lee TH; Linstedt AD
    Mol Biol Cell; 2001 Oct; 12(10):3152-60. PubMed ID: 11598199
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Saccharomyces cerevisiae v-SNARE Vti1p is required for multiple membrane transport pathways to the vacuole.
    Fischer von Mollard G; Stevens TH
    Mol Biol Cell; 1999 Jun; 10(6):1719-32. PubMed ID: 10359592
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intracellular sorting and targeting of melanosomal membrane proteins: identification of signals for sorting of the human brown locus protein, gp75.
    Vijayasaradhi S; Xu Y; Bouchard B; Houghton AN
    J Cell Biol; 1995 Aug; 130(4):807-20. PubMed ID: 7642699
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel aspartic proteinase is targeted to the secretory pathway and to the vacuole in the moss Physcomitrella patens.
    Schaaf A; Reski R; Decker EL
    Eur J Cell Biol; 2004 May; 83(4):145-52. PubMed ID: 15260436
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The riddle of the plant vacuolar sorting receptors.
    Masclaux FG; Galaud JP; Pont-Lezica R
    Protoplasma; 2005 Dec; 226(3-4):103-8. PubMed ID: 16333569
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dimerization of the Vacuolar Receptors AtRMR1 and -2 from Arabidopsis thaliana Contributes to Their Localization in the trans-Golgi Network.
    Occhialini A; Gouzerh G; Di Sansebastiano GP; Neuhaus JM
    Int J Mol Sci; 2016 Sep; 17(10):. PubMed ID: 27706038
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Short transmembrane domains with high-volume exoplasmic halves determine retention of Type II membrane proteins in the Golgi complex.
    Quiroga R; Trenchi A; González Montoro A; Valdez Taubas J; Maccioni HJ
    J Cell Sci; 2013 Dec; 126(Pt 23):5344-9. PubMed ID: 24105265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.