BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15271990)

  • 1. Rad53 kinase activation-independent replication checkpoint function of the N-terminal forkhead-associated (FHA1) domain.
    Pike BL; Tenis N; Heierhorst J
    J Biol Chem; 2004 Sep; 279(38):39636-44. PubMed ID: 15271990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse but overlapping functions of the two forkhead-associated (FHA) domains in Rad53 checkpoint kinase activation.
    Pike BL; Yongkiettrakul S; Tsai MD; Heierhorst J
    J Biol Chem; 2003 Aug; 278(33):30421-4. PubMed ID: 12805372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FHA domain-mediated DNA checkpoint regulation of Rad53.
    Schwartz MF; Lee SJ; Duong JK; Eminaga S; Stern DF
    Cell Cycle; 2003; 2(4):384-96. PubMed ID: 12851493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the N-terminal forkhead-associated domain in the cell cycle checkpoint function of the Rad53 kinase.
    Pike BL; Hammet A; Heierhorst J
    J Biol Chem; 2001 Apr; 276(17):14019-26. PubMed ID: 11278522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mdt1, a novel Rad53 FHA1 domain-interacting protein, modulates DNA damage tolerance and G(2)/M cell cycle progression in Saccharomyces cerevisiae.
    Pike BL; Yongkiettrakul S; Tsai MD; Heierhorst J
    Mol Cell Biol; 2004 Apr; 24(7):2779-88. PubMed ID: 15024067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Location-specific functions of the two forkhead-associated domains in Rad53 checkpoint kinase signaling.
    Tam AT; Pike BL; Heierhorst J
    Biochemistry; 2008 Mar; 47(12):3912-6. PubMed ID: 18302321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the FHA1 domain of yeast Rad53 and identification of binding sites for both FHA1 and its target protein Rad9.
    Liao H; Yuan C; Su MI; Yongkiettrakul S; Qin D; Li H; Byeon IJ; Pei D; Tsai MD
    J Mol Biol; 2000 Dec; 304(5):941-51. PubMed ID: 11124038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of checkpoint kinase Rad53 inactivation after a double-strand break in Saccharomyces cerevisiae.
    Guillemain G; Ma E; Mauger S; Miron S; Thai R; Guérois R; Ochsenbein F; Marsolier-Kergoat MC
    Mol Cell Biol; 2007 May; 27(9):3378-89. PubMed ID: 17325030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structures of two FHA1-phosphothreonine peptide complexes provide insight into the structural basis of the ligand specificity of FHA1 from yeast Rad53.
    Yuan C; Yongkiettrakul S; Byeon IJ; Zhou S; Tsai MD
    J Mol Biol; 2001 Nov; 314(3):563-75. PubMed ID: 11846567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel role for checkpoint Rad53 protein kinase in the initiation of chromosomal DNA replication in Saccharomyces cerevisiae.
    Dohrmann PR; Sclafani RA
    Genetics; 2006 Sep; 174(1):87-99. PubMed ID: 16816422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An FHA domain-mediated protein interaction network of Rad53 reveals its role in polarized cell growth.
    Smolka MB; Chen SH; Maddox PS; Enserink JM; Albuquerque CP; Wei XX; Desai A; Kolodner RD; Zhou H
    J Cell Biol; 2006 Dec; 175(5):743-53. PubMed ID: 17130285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint.
    Schwartz MF; Duong JK; Sun Z; Morrow JS; Pradhan D; Stern DF
    Mol Cell; 2002 May; 9(5):1055-65. PubMed ID: 12049741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage.
    O'Neill BM; Szyjka SJ; Lis ET; Bailey AO; Yates JR; Aparicio OM; Romesberg FE
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9290-5. PubMed ID: 17517611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade.
    Lee H; Yuan C; Hammet A; Mahajan A; Chen ES; Wu MR; Su MI; Heierhorst J; Tsai MD
    Mol Cell; 2008 Jun; 30(6):767-78. PubMed ID: 18570878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct kinase-to-kinase signaling mediated by the FHA phosphoprotein recognition domain of the Dun1 DNA damage checkpoint kinase.
    Bashkirov VI; Bashkirova EV; Haghnazari E; Heyer WD
    Mol Cell Biol; 2003 Feb; 23(4):1441-52. PubMed ID: 12556502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct phosphatases mediate the deactivation of the DNA damage checkpoint kinase Rad53.
    Travesa A; Duch A; Quintana DG
    J Biol Chem; 2008 Jun; 283(25):17123-30. PubMed ID: 18441009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of Mrc1, a mediator of the replication checkpoint, by telomere erosion.
    Grandin N; Bailly A; Charbonneau M
    Biol Cell; 2005 Oct; 97(10):799-814. PubMed ID: 15760303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53.
    Osborn AJ; Elledge SJ
    Genes Dev; 2003 Jul; 17(14):1755-67. PubMed ID: 12865299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of the yeast Rad53 FHA2 complexed with a phosphothreonine peptide pTXXL: comparison with the structures of FHA2-pYXL and FHA1-pTXXD complexes.
    Byeon IJ; Yongkiettrakul S; Tsai MD
    J Mol Biol; 2001 Nov; 314(3):577-88. PubMed ID: 11846568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ligand specificity of yeast Rad53 FHA domains at the +3 position is determined by nonconserved residues.
    Yongkiettrakul S; Byeon IJ; Tsai MD
    Biochemistry; 2004 Apr; 43(13):3862-9. PubMed ID: 15049693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.