These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 15271998)
1. Probing the dynamics of a mobile loop above the active site of L1, a metallo-beta-lactamase from Stenotrophomonas maltophilia, via site-directed mutagenesis and stopped-flow fluorescence spectroscopy. Garrity JD; Pauff JM; Crowder MW J Biol Chem; 2004 Sep; 279(38):39663-70. PubMed ID: 15271998 [TBL] [Abstract][Full Text] [Related]
2. Probing substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia by using site-directed mutagenesis. Carenbauer AL; Garrity JD; Periyannan G; Yates RB; Crowder MW BMC Biochem; 2002; 3():4. PubMed ID: 11876827 [TBL] [Abstract][Full Text] [Related]
3. Metal binding Asp-120 in metallo-beta-lactamase L1 from Stenotrophomonas maltophilia plays a crucial role in catalysis. Garrity JD; Carenbauer AL; Herron LR; Crowder MW J Biol Chem; 2004 Jan; 279(2):920-7. PubMed ID: 14573595 [TBL] [Abstract][Full Text] [Related]
4. Structural and biochemical analysis of the metallo-β-lactamase L1 from emerging pathogen Stenotrophomonas maltophilia revealed the subtle but distinct di-metal scaffold for catalytic activity. Kim Y; Maltseva N; Wilamowski M; Tesar C; Endres M; Joachimiak A Protein Sci; 2020 Mar; 29(3):723-743. PubMed ID: 31846104 [TBL] [Abstract][Full Text] [Related]
5. Characterization of monomeric L1 metallo-beta -lactamase and the role of the N-terminal extension in negative cooperativity and antibiotic hydrolysis. Simm AM; Higgins CS; Carenbauer AL; Crowder MW; Bateson JH; Bennett PM; Clarke AR; Halford SE; Walsh TR J Biol Chem; 2002 Jul; 277(27):24744-52. PubMed ID: 11940588 [TBL] [Abstract][Full Text] [Related]
6. Structure and mechanism of copper- and nickel-substituted analogues of metallo-beta-lactamase L1. Hu Z; Spadafora LJ; Hajdin CE; Bennett B; Crowder MW Biochemistry; 2009 Apr; 48(13):2981-9. PubMed ID: 19228020 [TBL] [Abstract][Full Text] [Related]
7. In vivo folding of recombinant metallo-beta-lactamase L1 requires the presence of Zn(II). Periyannan G; Shaw PJ; Sigdel T; Crowder MW Protein Sci; 2004 Aug; 13(8):2236-43. PubMed ID: 15238636 [TBL] [Abstract][Full Text] [Related]
8. Probing the role of Asp-120(81) of metallo-beta-lactamase (IMP-1) by site-directed mutagenesis, kinetic studies, and X-ray crystallography. Yamaguchi Y; Kuroki T; Yasuzawa H; Higashi T; Jin W; Kawanami A; Yamagata Y; Arakawa Y; Goto M; Kurosaki H J Biol Chem; 2005 May; 280(21):20824-32. PubMed ID: 15788415 [TBL] [Abstract][Full Text] [Related]
10. Site-selective binding of Zn(II) to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. Costello A; Periyannan G; Yang KW; Crowder MW; Tierney DL J Biol Inorg Chem; 2006 Apr; 11(3):351-8. PubMed ID: 16489411 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the importance of the metallo-beta-lactamase active site loop in substrate binding and catalysis. Moali C; Anne C; Lamotte-Brasseur J; Groslambert S; Devreese B; Van Beeumen J; Galleni M; Frère JM Chem Biol; 2003 Apr; 10(4):319-29. PubMed ID: 12725860 [TBL] [Abstract][Full Text] [Related]
12. The flavonoid galangin inhibits the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia. Denny BJ; Lambert PA; West PW FEMS Microbiol Lett; 2002 Feb; 208(1):21-4. PubMed ID: 11934488 [TBL] [Abstract][Full Text] [Related]
15. Probing the effect of the non-active-site mutation Y229W in New Delhi metallo-β-lactamase-1 by site-directed mutagenesis, kinetic studies, and molecular dynamics simulations. Chen J; Chen H; Shi Y; Hu F; Lao X; Gao X; Zheng H; Yao W PLoS One; 2013; 8(12):e82080. PubMed ID: 24339993 [TBL] [Abstract][Full Text] [Related]
16. Differential regulation of L1 and L2 beta-lactamase expression in Stenotrophomonas maltophilia. Avison MB; Higgins CS; Ford PJ; von Heldreich CJ; Walsh TR; Bennett PM J Antimicrob Chemother; 2002 Feb; 49(2):387-9. PubMed ID: 11815585 [TBL] [Abstract][Full Text] [Related]
17. The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution. Ullah JH; Walsh TR; Taylor IA; Emery DC; Verma CS; Gamblin SJ; Spencer J J Mol Biol; 1998 Nov; 284(1):125-36. PubMed ID: 9811546 [TBL] [Abstract][Full Text] [Related]
18. Mutational analysis of metallo-beta-lactamase CcrA from Bacteroides fragilis. Yanchak MP; Taylor RA; Crowder MW Biochemistry; 2000 Sep; 39(37):11330-9. PubMed ID: 10985778 [TBL] [Abstract][Full Text] [Related]
19. Role of the flexible loop of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus in enzyme catalysis. Munagala N; Basus VJ; Wang CC Biochemistry; 2001 Apr; 40(14):4303-11. PubMed ID: 11284686 [TBL] [Abstract][Full Text] [Related]
20. Antibiotic binding to dizinc beta-lactamase L1 from Stenotrophomonas maltophilia: SCC-DFTB/CHARMM and DFT studies. Xu D; Guo H; Cui Q J Phys Chem A; 2007 Jul; 111(26):5630-6. PubMed ID: 17388313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]