These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 15272010)

  • 1. The DeltaF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator.
    Chen EY; Bartlett MC; Loo TW; Clarke DM
    J Biol Chem; 2004 Sep; 279(38):39620-7. PubMed ID: 15272010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correctors promote folding of the CFTR in the endoplasmic reticulum.
    Loo TW; Bartlett MC; Clarke DM
    Biochem J; 2008 Jul; 413(1):29-36. PubMed ID: 18361776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction of the most common cystic fibrosis mutation (Delta F508) into human P-glycoprotein disrupts packing of the transmembrane segments.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2002 Aug; 277(31):27585-8. PubMed ID: 12070134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein.
    Wang Y; Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2007 Nov; 282(46):33247-33251. PubMed ID: 17911111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cystic fibrosis V232D mutation inhibits CFTR maturation by disrupting a hydrophobic pocket rather than formation of aberrant interhelical hydrogen bonds.
    Loo TW; Clarke DM
    Biochem Pharmacol; 2014 Mar; 88(1):46-57. PubMed ID: 24412276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correctors enhance maturation of DeltaF508 CFTR by promoting interactions between the two halves of the molecule.
    Loo TW; Bartlett MC; Clarke DM
    Biochemistry; 2009 Oct; 48(41):9882-90. PubMed ID: 19761259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure.
    Lewis HA; Zhao X; Wang C; Sauder JM; Rooney I; Noland BW; Lorimer D; Kearins MC; Conners K; Condon B; Maloney PC; Guggino WB; Hunt JF; Emtage S
    J Biol Chem; 2005 Jan; 280(2):1346-53. PubMed ID: 15528182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusional mobility of the cystic fibrosis transmembrane conductance regulator mutant, delta F508-CFTR, in the endoplasmic reticulum measured by photobleaching of GFP-CFTR chimeras.
    Haggie PM; Stanton BA; Verkman AS
    J Biol Chem; 2002 May; 277(19):16419-25. PubMed ID: 11877404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide binding, ATP hydrolysis, and mutation of the catalytic carboxylates of human P-glycoprotein cause distinct conformational changes in the transmembrane segments.
    Loo TW; Bartlett MC; Clarke DM
    Biochemistry; 2007 Aug; 46(32):9328-36. PubMed ID: 17636884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Base treatment corrects defects due to misfolding of mutant cystic fibrosis transmembrane conductance regulator.
    Namkung W; Kim KH; Lee MG
    Gastroenterology; 2005 Dec; 129(6):1979-90. PubMed ID: 16344066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cystic fibrosis-causing mutation deltaF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis.
    Thibodeau PH; Richardson JM; Wang W; Millen L; Watson J; Mendoza JL; Du K; Fischman S; Senderowitz H; Lukacs GL; Kirk K; Thomas PJ
    J Biol Chem; 2010 Nov; 285(46):35825-35. PubMed ID: 20667826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional cystic fibrosis transmembrane conductance regulator tagged with an epitope of the vesicular stomatis virus glycoprotein can be addressed to the apical domain of polarized cells.
    Costa de Beauregard MA; Edelman A; Chesnoy-Marchais D; Tondelier D; Lapillonne A; El Marjou F; Robine S; Louvard D
    Eur J Cell Biol; 2000 Nov; 79(11):795-802. PubMed ID: 11139142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical conjugation of DeltaF508-CFTR corrector deoxyspergualin to transporter human serum albumin enhances its ability to rescue Cl- channel functions.
    Norez C; Pasetto M; Dechecchi MC; Barison E; Anselmi C; Tamanini A; Quiri F; Cattel L; Rizzotti P; Dosio F; Cabrini G; Colombatti M
    Am J Physiol Lung Cell Mol Physiol; 2008 Aug; 295(2):L336-47. PubMed ID: 18515409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR.
    Du K; Sharma M; Lukacs GL
    Nat Struct Mol Biol; 2005 Jan; 12(1):17-25. PubMed ID: 15619635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function.
    Rabeh WM; Bossard F; Xu H; Okiyoneda T; Bagdany M; Mulvihill CM; Du K; di Bernardo S; Liu Y; Konermann L; Roldan A; Lukacs GL
    Cell; 2012 Jan; 148(1-2):150-63. PubMed ID: 22265408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of calnexin in the ER quality control and productive folding of CFTR; differential effect of calnexin knockout on wild-type and DeltaF508 CFTR.
    Okiyoneda T; Niibori A; Harada K; Kohno T; Michalak M; Duszyk M; Wada I; Ikawa M; Shuto T; Suico MA; Kai H
    Biochim Biophys Acta; 2008 Sep; 1783(9):1585-94. PubMed ID: 18457676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and intracellular processing of chimeric and mutant CFTR molecules.
    Pollet JF; Van Geffel J; Van Stevens E; Van Geffel R; Beauwens R; Bollen A; Jacobs P
    Biochim Biophys Acta; 2000 Jan; 1500(1):59-69. PubMed ID: 10564718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein kinase CK2, cystic fibrosis transmembrane conductance regulator, and the deltaF508 mutation: F508 deletion disrupts a kinase-binding site.
    Treharne KJ; Crawford RM; Xu Z; Chen JH; Best OG; Schulte EA; Gruenert DC; Wilson SM; Sheppard DN; Kunzelmann K; Mehta A
    J Biol Chem; 2007 Apr; 282(14):10804-13. PubMed ID: 17289674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels.
    Wang F; Zeltwanger S; Hu S; Hwang TC
    J Physiol; 2000 May; 524 Pt 3(Pt 3):637-48. PubMed ID: 10790148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chemical chaperone CFcor-325 repairs folding defects in the transmembrane domains of CFTR-processing mutants.
    Loo TW; Bartlett MC; Wang Y; Clarke DM
    Biochem J; 2006 May; 395(3):537-42. PubMed ID: 16417523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.