These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15272083)

  • 41. PF0610, a novel winged helix-turn-helix variant possessing a rubredoxin-like Zn ribbon motif from the hyperthermophilic archaeon, Pyrococcus furiosus.
    Wang X; Lee HS; Sugar FJ; Jenney FE; Adams MW; Prestegard JH
    Biochemistry; 2007 Jan; 46(3):752-61. PubMed ID: 17223696
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid visualization of hydrogen positions in protein neutron crystallographic structures.
    Munshi P; Chung SL; Blakeley MP; Weiss KL; Myles DA; Meilleur F
    Acta Crystallogr D Biol Crystallogr; 2012 Jan; 68(Pt 1):35-41. PubMed ID: 22194331
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hyperthermophilic redox chemistry: a re-evaluation.
    Hagedoorn PL; Driessen MC; van den Bosch M; Landa I; Hagen WR
    FEBS Lett; 1998 Dec; 440(3):311-4. PubMed ID: 9872393
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hyperthermophile protein behavior: partially-structured conformations of Pyrococcus furiosus rubredoxin monomers generated through forced cold-denaturation and refolding.
    Chandrayan SK; Prakash S; Ahmed S; Guptasarma P
    PLoS One; 2014; 9(3):e80014. PubMed ID: 24603413
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Absence of kinetic thermal stabilization in a hyperthermophile rubredoxin indicated by 40 microsecond folding in the presence of irreversible denaturation.
    LeMaster DM; Tang J; Hernández G
    Proteins; 2004 Oct; 57(1):118-27. PubMed ID: 15326598
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contribution of surface salt bridges to protein stability.
    Strop P; Mayo SL
    Biochemistry; 2000 Feb; 39(6):1251-5. PubMed ID: 10684603
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermostability in rubredoxin and its relationship to mechanical rigidity.
    Rader AJ
    Phys Biol; 2009 Dec; 7():16002. PubMed ID: 20009190
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A hyperactive NAD(P)H:Rubredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus.
    Ma K; Adams MW
    J Bacteriol; 1999 Sep; 181(17):5530-3. PubMed ID: 10464233
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cryo-neutron crystallographic data collection and preliminary refinement of left-handed Z-DNA d(CGCGCG).
    Harp JM; Coates L; Sullivan B; Egli M
    Acta Crystallogr F Struct Biol Commun; 2018 Oct; 74(Pt 10):603-609. PubMed ID: 30279310
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrahigh-resolution study on Pyrococcus abyssi rubredoxin: II. Introduction of an O-H...Sgamma-Fe hydrogen bond increased the reduction potential by 65 mV.
    Bönisch H; Schmidt CL; Bianco P; Ladenstein R
    J Biol Inorg Chem; 2007 Nov; 12(8):1163-71. PubMed ID: 17712580
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling the structure of Pyrococcus furiosus rubredoxin by homology to other X-ray structures.
    Wampler JE; Bradley EA; Stewart DE; Adams MW
    Protein Sci; 1993 Apr; 2(4):640-9. PubMed ID: 8518735
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Additivity of differential conformational dynamics in hyperthermophile/mesophile rubredoxin chimeras as monitored by hydrogen exchange.
    LeMaster DM; Hernández G
    Chembiochem; 2006 Dec; 7(12):1886-9. PubMed ID: 17068837
    [No Abstract]   [Full Text] [Related]  

  • 53. Molecular dynamics simulations of rubredoxin from Clostridium pasteurianum: changes in structure and electrostatic potential during redox reactions.
    Yelle RB; Park NS; Ichiye T
    Proteins; 1995 Jun; 22(2):154-67. PubMed ID: 7567963
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rubredoxin from Desulfovibrio gigas. A molecular model of the oxidized form at 1.4 A resolution.
    Frey M; Sieker L; Payan F; Haser R; Bruschi M; Pepe G; LeGall J
    J Mol Biol; 1987 Oct; 197(3):525-41. PubMed ID: 3441010
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automated orientation of water molecules in neutron crystallographic structures of proteins.
    Eriksson A; Caldararu O; Ryde U; Oksanen E
    Acta Crystallogr D Struct Biol; 2020 Oct; 76(Pt 10):1025-1032. PubMed ID: 33021504
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Streamlined purification and characterization of Pyrococcus furiosus rubredoxins with different N-terminal modifications by reversed-phase HPLC.
    Lin S; He C
    Anal Biochem; 2021 Apr; 619():114128. PubMed ID: 33577792
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Direct observation of hydrogen atom dynamics and interactions by ultrahigh resolution neutron protein crystallography.
    Chen JC; Hanson BL; Fisher SZ; Langan P; Kovalevsky AY
    Proc Natl Acad Sci U S A; 2012 Sep; 109(38):15301-6. PubMed ID: 22949690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The key to the extraordinary thermal stability of P. furiosus holo-rubredoxin: iron binding-guided packing of a core aromatic cluster responsible for high kinetic stability of the native structure.
    Prakash S; Sundd M; Guptasarma P
    PLoS One; 2014; 9(3):e89703. PubMed ID: 24603898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin.
    Lazaridis T; Lee I; Karplus M
    Protein Sci; 1997 Dec; 6(12):2589-605. PubMed ID: 9416608
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct measurements of the mechanical stability of zinc-thiolate bonds in rubredoxin by single-molecule atomic force microscopy.
    Zheng P; Li H
    Biophys J; 2011 Sep; 101(6):1467-73. PubMed ID: 21943428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.