These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 15272834)
1. Support vector machines-based quantitative structure-property relationship for the prediction of heat capacity. Xue CX; Zhang RS; Liu HX; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(4):1267-74. PubMed ID: 15272834 [TBL] [Abstract][Full Text] [Related]
2. Study of the quantitative structure-mobility relationship of carboxylic acids in capillary electrophoresis based on support vector machines. Xue CX; Zhang RS; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(3):950-7. PubMed ID: 15154762 [TBL] [Abstract][Full Text] [Related]
3. An accurate QSPR study of O-H bond dissociation energy in substituted phenols based on support vector machines. Xue CX; Zhang RS; Liu HX; Yao XJ; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(2):669-77. PubMed ID: 15032549 [TBL] [Abstract][Full Text] [Related]
4. Quantitative predictions of gas chromatography retention indexes with support vector machines, radial basis neural networks and multiple linear regression. Chen HF Anal Chim Acta; 2008 Feb; 609(1):24-36. PubMed ID: 18243870 [TBL] [Abstract][Full Text] [Related]
5. A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine. Fatemi MH; Gharaghani S Bioorg Med Chem; 2007 Dec; 15(24):7746-54. PubMed ID: 17870538 [TBL] [Abstract][Full Text] [Related]
6. Benchmarking of linear and nonlinear approaches for quantitative structure-property relationship studies of metal complexation with ionophores. Tetko IV; Solov'ev VP; Antonov AV; Yao X; Doucet JP; Fan B; Hoonakker F; Fourches D; Jost P; Lachiche N; Varnek A J Chem Inf Model; 2006; 46(2):808-19. PubMed ID: 16563012 [TBL] [Abstract][Full Text] [Related]
7. Prediction of the isoelectric point of an amino acid based on GA-PLS and SVMs. Liu HX; Zhang RS; Yao XJ; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(1):161-7. PubMed ID: 14741023 [TBL] [Abstract][Full Text] [Related]
8. The accurate QSPR models to predict the bioconcentration factors of nonionic organic compounds based on the heuristic method and support vector machine. Liu H; Yao X; Zhang R; Liu M; Hu Z; Fan B Chemosphere; 2006 May; 63(5):722-33. PubMed ID: 16226786 [TBL] [Abstract][Full Text] [Related]
9. QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and a support vector machine. Xue CX; Zhang RS; Liu HX; Yao XJ; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(5):1693-700. PubMed ID: 15446828 [TBL] [Abstract][Full Text] [Related]
10. Predictions of chromatographic retention indices of alkylphenols with support vector machines and multiple linear regression. Fatemi MH; Baher E; Ghorbanzade'h M J Sep Sci; 2009 Dec; 32(23-24):4133-42. PubMed ID: 19937857 [TBL] [Abstract][Full Text] [Related]
11. Prediction of ozone tropospheric degradation rate constants by projection pursuit regression. Ren Y; Liu H; Yao X; Liu M Anal Chim Acta; 2007 Apr; 589(1):150-8. PubMed ID: 17397666 [TBL] [Abstract][Full Text] [Related]
12. QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses. Xu J; Wang L; Wang L; Shen X; Xu W J Comput Chem; 2011 Nov; 32(15):3241-52. PubMed ID: 21837634 [TBL] [Abstract][Full Text] [Related]
13. Quantitative prediction of logk of peptides in high-performance liquid chromatography based on molecular descriptors by using the heuristic method and support vector machine. Liu HX; Xue CX; Zhang RS; Yao XJ; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(6):1979-86. PubMed ID: 15554667 [TBL] [Abstract][Full Text] [Related]
14. A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine. Pan Y; Jiang J; Wang R; Cao H; Cui Y J Hazard Mater; 2009 Sep; 168(2-3):962-9. PubMed ID: 19329246 [TBL] [Abstract][Full Text] [Related]
15. Prediction of retention times for a large set of pesticides or toxicants based on support vector machine and the heuristic method. Li X; Luan F; Si H; Hu Z; Liu M Toxicol Lett; 2007 Dec; 175(1-3):136-44. PubMed ID: 18024009 [TBL] [Abstract][Full Text] [Related]
16. Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine. Wang J; Du H; Liu H; Yao X; Hu Z; Fan B Talanta; 2007 Aug; 73(1):147-56. PubMed ID: 19071862 [TBL] [Abstract][Full Text] [Related]
17. Study on adsorption behavior of volatile and semivolatile organic vapors to air-dry soils based on QSPR methods. Liu H; Yao X; Liu M; Hu Z; Fan B Environ Pollut; 2007 May; 147(1):41-9. PubMed ID: 17240022 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. Yao XJ; Panaye A; Doucet JP; Zhang RS; Chen HF; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(4):1257-66. PubMed ID: 15272833 [TBL] [Abstract][Full Text] [Related]
19. Development of migration models for acids in capillary electrophoresis using heuristic and radial basis function neural network methods. Xue C; Yao X; Liu H; Liu M; Hu Z; Fan B Electrophoresis; 2005 Jun; 26(11):2154-64. PubMed ID: 15852353 [TBL] [Abstract][Full Text] [Related]
20. Prediction of fungicidal activities of rice blast disease based on least-squares support vector machines and project pursuit regression. Du H; Wang J; Hu Z; Yao X; Zhang X J Agric Food Chem; 2008 Nov; 56(22):10785-92. PubMed ID: 18950187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]