BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 15273276)

  • 1. Changing the recognition specificity of a DNA-methyltransferase by in vitro evolution.
    Tímár E; Groma G; Kiss A; Venetianer P
    Nucleic Acids Res; 2004; 32(13):3898-903. PubMed ID: 15273276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of DNA minor groove interactions in substrate recognition by the M.SinI and M.EcoRII DNA (cytosine-5) methyltransferases.
    Kiss A; Pósfai G; Zsurka G; Raskó T; Venetianer P
    Nucleic Acids Res; 2001 Aug; 29(15):3188-94. PubMed ID: 11470876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo DNA protection by relaxed-specificity SinI DNA methyltransferase variants.
    Tímár E; Venetianer P; Kiss A
    J Bacteriol; 2008 Dec; 190(24):8003-8. PubMed ID: 18849437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altering the sequence specificity of HaeIII methyltransferase by directed evolution using in vitro compartmentalization.
    Cohen HM; Tawfik DS; Griffiths AD
    Protein Eng Des Sel; 2004 Jan; 17(1):3-11. PubMed ID: 14985532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exact size and organization of DNA target-recognizing domains of multispecific DNA-(cytosine-C5)-methyltransferases.
    Trautner TA; Pawlek B; Behrens B; Willert J
    EMBO J; 1996 Mar; 15(6):1434-42. PubMed ID: 8635476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a subdomain within DNA-(cytosine-C5)-methyltransferases responsible for the recognition of the 5' part of their DNA target.
    Lange C; Wild C; Trautner TA
    EMBO J; 1996 Mar; 15(6):1443-50. PubMed ID: 8635477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of sequence-specific DNA methylation: target recognition and catalysis are coupled in M.HhaI.
    Youngblood B; Buller F; Reich NO
    Biochemistry; 2006 Dec; 45(51):15563-72. PubMed ID: 17176077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Purification and site-directed mutagenesis of DNA methyltransferase SssI].
    Darií MV; Kirsanova OV; Drutsa VL; Kochetkov SN; Gromova ES
    Mol Biol (Mosk); 2007; 41(1):121-9. PubMed ID: 17380899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered extrahelical base destabilization enhances sequence discrimination of DNA methyltransferase M.HhaI.
    Youngblood B; Shieh FK; De Los Rios S; Perona JJ; Reich NO
    J Mol Biol; 2006 Sep; 362(2):334-46. PubMed ID: 16919299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in hpyAVIBM, C⁵ cytosine DNA methyltransferase from Helicobacter pylori result in relaxed specificity.
    Kumar R; Sabareesh V; Mukhopadhyay AK; Rao DN
    FEBS J; 2012 Mar; 279(6):1080-92. PubMed ID: 22269034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changing the DNA recognition specificity of the EcoDam DNA-(adenine-N6)-methyltransferase by directed evolution.
    Chahar S; Elsawy H; Ragozin S; Jeltsch A
    J Mol Biol; 2010 Jan; 395(1):79-88. PubMed ID: 19766657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. M.(phi)BssHII, a novel cytosine-C5-DNA-methyltransferase with target-recognizing domains at separated locations of the enzyme.
    Sethmann S; Ceglowski P; Willert J; Iwanicka-Nowicka R; Trautner TA; Walter J
    EMBO J; 1999 Jun; 18(12):3502-8. PubMed ID: 10369689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of the gene encoding a new DNA methyltransferase from Neisseria gonorrhoeae.
    Radlińska M; Piekarowicz A
    Biol Chem; 1998 Nov; 379(11):1391-5. PubMed ID: 9865616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and characterization of the gene encoding PspPI methyltransferase from the Antarctic psychrotroph Psychrobacter sp. strain TA137. Predicted interactions with DNA and organization of the variable region.
    Rina M; Caufrier F; Markaki M; Mavromatis K; Kokkinidis M; Bouriotis V
    Gene; 1997 Sep; 197(1-2):353-60. PubMed ID: 9332385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Arg165 towards base flipping, base stabilization and catalysis in M.HhaI.
    Shieh FK; Youngblood B; Reich NO
    J Mol Biol; 2006 Sep; 362(3):516-27. PubMed ID: 16926025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing the functional organization of a novel restriction modification system, the BcgI system.
    Kong H
    J Mol Biol; 1998 Jun; 279(4):823-32. PubMed ID: 9642063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fancy footwork in the sequence space shuffle.
    Arnold FH
    Nat Biotechnol; 2006 Mar; 24(3):328-30. PubMed ID: 16525408
    [No Abstract]   [Full Text] [Related]  

  • 18. Mutational analysis of the CG recognizing DNA methyltransferase SssI: insight into enzyme-DNA interactions.
    Darii MV; Cherepanova NA; Subach OM; Kirsanova OV; Raskó T; Slaska-Kiss K; Kiss A; Deville-Bonne D; Reboud-Ravaux M; Gromova ES
    Biochim Biophys Acta; 2009 Nov; 1794(11):1654-62. PubMed ID: 19654054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed evolution of restriction endonuclease BstYI to achieve increased substrate specificity.
    Samuelson JC; Xu SY
    J Mol Biol; 2002 Jun; 319(3):673-83. PubMed ID: 12054862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of a yeast pseudo DNA methyltransferase by deletion of a single amino acid.
    Pinarbasi E; Elliott J; Hornby DP
    J Mol Biol; 1996 Apr; 257(4):804-13. PubMed ID: 8636983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.