These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 15273302)
1. Insights into the DNA repair process by the formamidopyrimidine-DNA glycosylase investigated by molecular dynamics. Amara P; Serre L; Castaing B; Thomas A Protein Sci; 2004 Aug; 13(8):2009-21. PubMed ID: 15273302 [TBL] [Abstract][Full Text] [Related]
2. Molecular dynamics simulation of the opposite-base preference and interactions in the active site of formamidopyrimidine-DNA glycosylase. Popov AV; Endutkin AV; Vorobjev YN; Zharkov DO BMC Struct Biol; 2017 May; 17(1):5. PubMed ID: 28482831 [TBL] [Abstract][Full Text] [Related]
3. Functional flexibility of Bacillus stearothermophilus formamidopyrimidine DNA-glycosylase. Amara P; Serre L DNA Repair (Amst); 2006 Aug; 5(8):947-58. PubMed ID: 16857432 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of the Lactococcus lactis formamidopyrimidine-DNA glycosylase bound to an abasic site analogue-containing DNA. Serre L; Pereira de Jésus K; Boiteux S; Zelwer C; Castaing B EMBO J; 2002 Jun; 21(12):2854-65. PubMed ID: 12065399 [TBL] [Abstract][Full Text] [Related]
5. Structural insights into abasic site for Fpg specific binding and catalysis: comparative high-resolution crystallographic studies of Fpg bound to various models of abasic site analogues-containing DNA. Pereira de Jésus K; Serre L; Zelwer C; Castaing B Nucleic Acids Res; 2005; 33(18):5936-44. PubMed ID: 16243784 [TBL] [Abstract][Full Text] [Related]
6. DNA lesion recognition by the bacterial repair enzyme MutM. Fromme JC; Verdine GL J Biol Chem; 2003 Dec; 278(51):51543-8. PubMed ID: 14525999 [TBL] [Abstract][Full Text] [Related]
7. Structural Insight into the Discrimination between 8-Oxoguanine Glycosidic Conformers by DNA Repair Enzymes: A Molecular Dynamics Study of Human Oxoguanine Glycosylase 1 and Formamidopyrimidine-DNA Glycosylase. Sowlati-Hashjin S; Wetmore SD Biochemistry; 2018 Feb; 57(7):1144-1154. PubMed ID: 29320630 [TBL] [Abstract][Full Text] [Related]
8. Structural and biochemical studies of a plant formamidopyrimidine-DNA glycosylase reveal why eukaryotic Fpg glycosylases do not excise 8-oxoguanine. Duclos S; Aller P; Jaruga P; Dizdaroglu M; Wallace SS; Doublié S DNA Repair (Amst); 2012 Sep; 11(9):714-25. PubMed ID: 22789755 [TBL] [Abstract][Full Text] [Related]
9. Computational analysis of the mode of binding of 8-oxoguanine to formamidopyrimidine-DNA glycosylase. Song K; Hornak V; de Los Santos C; Grollman AP; Simmerling C Biochemistry; 2006 Sep; 45(36):10886-94. PubMed ID: 16953574 [TBL] [Abstract][Full Text] [Related]
10. Solution-state NMR investigation of DNA binding interactions in Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg): a dynamic description of the DNA/protein interface. Buchko GW; McAteer K; Wallace SS; Kennedy MA DNA Repair (Amst); 2005 Mar; 4(3):327-39. PubMed ID: 15661656 [TBL] [Abstract][Full Text] [Related]
11. Structural basis for the recognition of the FapydG lesion (2,6-diamino-4-hydroxy-5-formamidopyrimidine) by formamidopyrimidine-DNA glycosylase. Coste F; Ober M; Carell T; Boiteux S; Zelwer C; Castaing B J Biol Chem; 2004 Oct; 279(42):44074-83. PubMed ID: 15249553 [TBL] [Abstract][Full Text] [Related]
12. A dynamic checkpoint in oxidative lesion discrimination by formamidopyrimidine-DNA glycosylase. Li H; Endutkin AV; Bergonzo C; Campbell AJ; de los Santos C; Grollman A; Zharkov DO; Simmerling C Nucleic Acids Res; 2016 Jan; 44(2):683-94. PubMed ID: 26553802 [TBL] [Abstract][Full Text] [Related]
13. Entrapment and structure of an extrahelical guanine attempting to enter the active site of a bacterial DNA glycosylase, MutM. Qi Y; Spong MC; Nam K; Karplus M; Verdine GL J Biol Chem; 2010 Jan; 285(2):1468-78. PubMed ID: 19889642 [TBL] [Abstract][Full Text] [Related]
14. Radiation affects binding of Fpg repair protein to an abasic site containing DNA. Gillard N; Begusova M; Castaing B; Spotheim-Maurizot M Radiat Res; 2004 Nov; 162(5):566-71. PubMed ID: 15624311 [TBL] [Abstract][Full Text] [Related]
15. Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme. Qi Y; Spong MC; Nam K; Banerjee A; Jiralerspong S; Karplus M; Verdine GL Nature; 2009 Dec; 462(7274):762-6. PubMed ID: 20010681 [TBL] [Abstract][Full Text] [Related]
16. Crystallization and preliminary X-ray crystallographic studies of a complex between the Lactococcus lactis Fpg DNA-repair enzyme and an abasic site containing DNA. Pereira de Jésus K; Serre L; Hervouet N; Bouckson-Castaing V; Zelwer C; Castaing B Acta Crystallogr D Biol Crystallogr; 2002 Apr; 58(Pt 4):679-82. PubMed ID: 11914495 [TBL] [Abstract][Full Text] [Related]
17. In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites. Harrison L; Hatahet Z; Wallace SS J Mol Biol; 1999 Jul; 290(3):667-84. PubMed ID: 10395822 [TBL] [Abstract][Full Text] [Related]
18. Pre-steady-state kinetic study of substrate specificity of Escherichia coli formamidopyrimidine--DNA glycosylase. Kuznetsov NA; Koval VV; Zharkov DO; Vorobjev YN; Nevinsky GA; Douglas KT; Fedorova OS Biochemistry; 2007 Jan; 46(2):424-35. PubMed ID: 17209553 [TBL] [Abstract][Full Text] [Related]
19. Substrate discrimination by formamidopyrimidine-DNA glycosylase: distinguishing interactions within the active site. Perlow-Poehnelt RA; Zharkov DO; Grollman AP; Broyde S Biochemistry; 2004 Dec; 43(51):16092-105. PubMed ID: 15610004 [TBL] [Abstract][Full Text] [Related]
20. Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition. Kuznetsov NA; Bergonzo C; Campbell AJ; Li H; Mechetin GV; de los Santos C; Grollman AP; Fedorova OS; Zharkov DO; Simmerling C Nucleic Acids Res; 2015 Jan; 43(1):272-81. PubMed ID: 25520195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]