These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15273311)

  • 1. Proteome-wide functional classification and identification of prokaryotic transmembrane proteins by transmembrane topology similarity comparison.
    Arai M; Okumura K; Satake M; Shimizu T
    Protein Sci; 2004 Aug; 13(8):2170-83. PubMed ID: 15273311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proteome-wide analysis of domain architectures of prokaryotic single-spanning transmembrane proteins.
    Arai M; Fukushi T; Satake M; Shimizu T
    Comput Biol Chem; 2005 Oct; 29(5):379-87. PubMed ID: 16213795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ConPred_elite: a highly reliable approach to transmembrane topology predication.
    Xia JX; Ikeda M; Shimizu T
    Comput Biol Chem; 2004 Feb; 28(1):51-60. PubMed ID: 15022642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of transmembrane protein functions by binary topology patterns.
    Sugiyama Y; Polulyakh N; Shimizu T
    Protein Eng; 2003 Jul; 16(7):479-88. PubMed ID: 12915725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. More than 1,001 problems with protein domain databases: transmembrane regions, signal peptides and the issue of sequence homology.
    Wong WC; Maurer-Stroh S; Eisenhaber F
    PLoS Comput Biol; 2010 Jul; 6(7):e1000867. PubMed ID: 20686689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal gene duplication in the evolution of prokaryotic transmembrane proteins.
    Shimizu T; Mitsuke H; Noto K; Arai M
    J Mol Biol; 2004 May; 339(1):1-15. PubMed ID: 15123416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome-wide classification and identification of mammalian-type GPCRs by binary topology pattern.
    Inoue Y; Ikeda M; Shimizu T
    Comput Biol Chem; 2004 Feb; 28(1):39-49. PubMed ID: 15022640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Families of membranous proteins can be characterized by the amino acid composition of their transmembrane domains.
    Sadka T; Linial M
    Bioinformatics; 2005 Jun; 21 Suppl 1():i378-86. PubMed ID: 15961481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of the human proteome.
    Müller A; MacCallum RM; Sternberg MJ
    Genome Res; 2002 Nov; 12(11):1625-41. PubMed ID: 12421749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity.
    Leuthaeuser JB; Knutson ST; Kumar K; Babbitt PC; Fetrow JS
    Protein Sci; 2015 Sep; 24(9):1423-39. PubMed ID: 26073648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin.
    Almén MS; Nordström KJ; Fredriksson R; Schiöth HB
    BMC Biol; 2009 Aug; 7():50. PubMed ID: 19678920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustering and visualizing similarity networks of membrane proteins.
    Hu GM; Mai TL; Chen CM
    Proteins; 2015 Aug; 83(8):1450-61. PubMed ID: 26011797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MetaTM - a consensus method for transmembrane protein topology prediction.
    Klammer M; Messina DN; Schmitt T; Sonnhammer EL
    BMC Bioinformatics; 2009 Sep; 10():314. PubMed ID: 19785723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TMB-Hunt: an amino acid composition based method to screen proteomes for beta-barrel transmembrane proteins.
    Garrow AG; Agnew A; Westhead DR
    BMC Bioinformatics; 2005 Mar; 6():56. PubMed ID: 15769290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PEP: Predictions for Entire Proteomes.
    Carter P; Liu J; Rost B
    Nucleic Acids Res; 2003 Jan; 31(1):410-3. PubMed ID: 12520036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unexpected features of the dark proteome.
    Perdigão N; Heinrich J; Stolte C; Sabir KS; Buckley MJ; Tabor B; Signal B; Gloss BS; Hammang CJ; Rost B; Schafferhans A; O'Donoghue SI
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15898-903. PubMed ID: 26578815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membranome: a database for proteome-wide analysis of single-pass membrane proteins.
    Lomize AL; Lomize MA; Krolicki SR; Pogozheva ID
    Nucleic Acids Res; 2017 Jan; 45(D1):D250-D255. PubMed ID: 27510400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Not all transmembrane helices are born equal: Towards the extension of the sequence homology concept to membrane proteins.
    Wong WC; Maurer-Stroh S; Eisenhaber F
    Biol Direct; 2011 Oct; 6():57. PubMed ID: 22024092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combination of compositional index and genetic algorithm for predicting transmembrane helical segments.
    Zaki N; Bouktif S; Lazarova-Molnar S
    PLoS One; 2011; 6(7):e21821. PubMed ID: 21814556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved sequences of prokaryotic proteomes and their compositional age.
    Sobolevsky Y; Trifonov EN
    J Mol Evol; 2005 Nov; 61(5):591-6. PubMed ID: 16205982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.