BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 15273899)

  • 1. The effect of rear-wheel position on seating ergonomics and mobility efficiency in wheelchair users with spinal cord injuries: a pilot study.
    Samuelsson KA; Tropp H; Nylander E; Gerdle B
    J Rehabil Res Dev; 2004; 41(1):65-74. PubMed ID: 15273899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the community use of an ultralight wheelchair with "on the fly" adjustable seating functions: A pilot study.
    Mattie J; Borisoff J; Miller WC; Noureddin B
    PLoS One; 2017; 12(3):e0173662. PubMed ID: 28278254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative ergonomic assessment of manual wheelchairs by paraplegic users.
    Gil-Agudo A; Solís-Mozos M; del-Ama AJ; Crespo-Ruiz B; de la Peña-González AI; Pérez-Nombela S
    Disabil Rehabil Assist Technol; 2013 Jul; 8(4):305-13. PubMed ID: 23078201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of camber on wheeling efficiency in the experienced and inexperienced wheelchair user.
    Perdios A; Sawatzky BJ; Sheel AW
    J Rehabil Res Dev; 2007; 44(3):459-66. PubMed ID: 18247242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of seat position on manual wheelchair propulsion biomechanics: a quasi-static model-based approach.
    Richter WM
    Med Eng Phys; 2001 Dec; 23(10):707-12. PubMed ID: 11801412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of verbal training and visual feedback on manual wheelchair propulsion.
    DeGroot KK; Hollingsworth HH; Morgan KA; Morris CL; Gray DB
    Disabil Rehabil Assist Technol; 2009 Mar; 4(2):86-94. PubMed ID: 19253097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of seat position on wheelchair propulsion biomechanics.
    Kotajarvi BR; Sabick MB; An KN; Zhao KD; Kaufman KR; Basford JR
    J Rehabil Res Dev; 2004 May; 41(3B):403-14. PubMed ID: 15543458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manual wheelchair pushrim biomechanics and axle position.
    Boninger ML; Baldwin M; Cooper RA; Koontz A; Chan L
    Arch Phys Med Rehabil; 2000 May; 81(5):608-13. PubMed ID: 10807100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical analysis of wheelchair propulsion for various seating positions.
    Mâsse LC; Lamontagne M; O'Riain MD
    J Rehabil Res Dev; 1992; 29(3):12-28. PubMed ID: 1640378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilizing research in wheelchair and seating selection and configuration for children with injury/dysfunction of the spinal cord.
    Krey CH; Calhoun CL
    J Spinal Cord Med; 2004; 27 Suppl 1():S29-37. PubMed ID: 15503700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of metabolic cost, performance, and efficiency of propulsion using an ergonomic hand drive mechanism and a conventional manual wheelchair.
    Zukowski LA; Roper JA; Shechtman O; Otzel DM; Bouwkamp J; Tillman MD
    Arch Phys Med Rehabil; 2014 Mar; 95(3):546-51. PubMed ID: 24016403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. End user evaluation of a Kneeling Wheelchair with "on the fly" adjustable seating functions.
    Mattie J; Wong A; Leland D; Borisoff J
    Disabil Rehabil Assist Technol; 2019 Aug; 14(6):543-554. PubMed ID: 29667464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a pushrim-activated, power-assisted wheelchair.
    Cooper RA; Fitzgerald SG; Boninger ML; Prins K; Rentschler AJ; Arva J; O'connor TJ
    Arch Phys Med Rehabil; 2001 May; 82(5):702-8. PubMed ID: 11346854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The short-term influence of rear wheel axle position and training on manual wheelchair propulsion technique in novice able-bodied participants during steady-state treadmill propulsion, a pilot study.
    Rice I; Jayaraman C; Pohlig RT
    Assist Technol; 2020 May; 32(3):136-143. PubMed ID: 30060708
    [No Abstract]   [Full Text] [Related]  

  • 16. Using seat contour measurements during seating evaluations of individuals with SCI.
    Sprigle S; Schuch JZ
    Assist Technol; 1993; 5(1):24-35. PubMed ID: 10148621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microclimate evaluation of strap-based wheelchair seating systems for persons with spinal cord injury: A pilot study.
    Olney CM; Simone A; Hanowski K; Rector TS; Goldish GD; Hansen AH; Ferguson JE
    J Tissue Viability; 2018 Aug; 27(3):181-187. PubMed ID: 30008299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comfort and stability of wheelchair backrests according to the TAWC (tool for assessing wheelchair discomfort).
    Hong EK; Dicianno BE; Pearlman J; Cooper R; Cooper RA
    Disabil Rehabil Assist Technol; 2016; 11(3):223-7. PubMed ID: 25036985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pilot study of strap-based custom wheelchair seating system in persons with spinal cord injury.
    Ferguson JE; Wittig BL; ; Payette M; ; Goldish GD; Hansen AH
    J Rehabil Res Dev; 2014; 51(8):1255-64. PubMed ID: 25626113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the lived experience of people using ultralight wheelchairs with on-the-fly adjustable seating function.
    Mattie J; Aitken-Mundhenk L; Bicknell L; Mortenson WB; Borisoff J
    Disabil Rehabil Assist Technol; 2020 Nov; 15(8):878-884. PubMed ID: 31208260
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.