These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 15274091)

  • 81. Temperature dependence of distributions of conformations of a small peptide.
    Mitsutake A; Hansmann UH; Okamoto Y
    J Mol Graph Model; 1998; 16(4-6):226-38, 262-3. PubMed ID: 10522242
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Antisense peptide interactions studied by electrospray ionization mass spectrometry.
    Madhusudanan KP; Katti SB; Haq W; Misra PK
    J Mass Spectrom; 2000 Feb; 35(2):237-41. PubMed ID: 10679986
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Fluorescence decay time distribution analysis of cyclic enkephalin analogues; influence of solvent and Leu configuration in position 5 on conformation.
    Malicka J; Ganzynkowicz R; Groth M; Czaplewski C; Karolczak J; Liwo A; Wiczk W
    Acta Biochim Pol; 2001; 48(1):95-102. PubMed ID: 11440187
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The multiple-minima problem in the conformational analysis of polypeptides. III. An electrostatically driven Monte Carlo method: tests on enkephalin.
    Ripoll DR; Scheraga HA
    J Protein Chem; 1989 Apr; 8(2):263-87. PubMed ID: 2736043
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Conformational energy calculations on enkephalins and enkephalin analogs. Classification of conformations to different configurational types.
    Manavalan P; Momany FA
    Int J Pept Protein Res; 1981 Sep; 18(3):256-75. PubMed ID: 7341519
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Conformational study of Met-enkephalin based on the ECEPP force fields.
    Zhan L; Chen JZ; Liu WK
    Biophys J; 2006 Oct; 91(7):2399-404. PubMed ID: 16829555
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Multifaceted folding in a foldamer featuring highly cooperative folds.
    Ramesh VV; Priya G; Kotmale AS; Gonnade RG; Rajamohanan PR; Sanjayan GJ
    Chem Commun (Camb); 2012 Nov; 48(91):11205-7. PubMed ID: 23051854
    [TBL] [Abstract][Full Text] [Related]  

  • 88. [Theoretical analysis of peptide conformations in water and in alcohol].
    Kinoshita M; Okamoto Y; Hirata F
    Tanpakushitsu Kakusan Koso; 2001 May; 46(6):713-8. PubMed ID: 11360495
    [No Abstract]   [Full Text] [Related]  

  • 89. An estimate of the numbers and density of low-energy structures (or decoys) in the conformational landscape of proteins.
    Vadivel K; Namasivayam G
    PLoS One; 2009; 4(4):e5148. PubMed ID: 19357778
    [TBL] [Abstract][Full Text] [Related]  

  • 90. MOLS sampling and its applications in structural biophysics.
    Ramya L; Nehru Viji S; Arun Prasad P; Kanagasabai V; Gautham N
    Biophys Rev; 2010 Dec; 2(4):169-179. PubMed ID: 28510038
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Surface area included in energy refinement of proteins. A comparative study on atomic solvation parameters.
    von Freyberg B; Richmond TJ; Braun W
    J Mol Biol; 1993 Sep; 233(2):275-92. PubMed ID: 7690855
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Use of buildup and energy-minimization procedures to compute low-energy structures of the backbone of enkephalin.
    Vásquez M; Scheraga HA
    Biopolymers; 1985 Aug; 24(8):1437-47. PubMed ID: 4041545
    [No Abstract]   [Full Text] [Related]  

  • 93. Prediction of the native conformation of a polypeptide by a statistical-mechanical procedure. III. Probable and average conformations of enkephalin.
    Paine GH; Scheraga HA
    Biopolymers; 1987 Jul; 26(7):1125-62. PubMed ID: 3620578
    [No Abstract]   [Full Text] [Related]  

  • 94. A new peptide docking strategy using a mean field technique with mutually orthogonal Latin square sampling.
    Arun Prasad P; Gautham N
    J Comput Aided Mol Des; 2008 Nov; 22(11):815-29. PubMed ID: 18465087
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Extent of hydrogen-bond protection in folded proteins: a constraint on packing architectures.
    Fernández A; Berry RS
    Biophys J; 2002 Nov; 83(5):2475-81. PubMed ID: 12414681
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Conformational flexibility in enkephalins: solvent dependent transitions in peptides with Gly-Gly segments detected by circular dichroism.
    Sudha TS; Balaram P
    FEBS Lett; 1981 Nov; 134(1):32-6. PubMed ID: 9222318
    [No Abstract]   [Full Text] [Related]  

  • 97. Conformational sampling by self-organization.
    Xu H; Izrailev S; Agrafiotis DK
    J Chem Inf Comput Sci; 2003; 43(4):1186-91. PubMed ID: 12870910
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Aspects of the design of conformationally constrained peptides.
    Smith PE; al-Obeidi F; Pettitt BM
    Methods Enzymol; 1991; 202():411-36. PubMed ID: 1664477
    [No Abstract]   [Full Text] [Related]  

  • 99. Dimerization of chirally mutated Enkephalin neurotransmitters: implications for peptide and protein aggregation mechanisms.
    Bleiholder C; Dupuis NF; Bowers MT
    J Phys Chem B; 2013 Feb; 117(6):1770-9. PubMed ID: 23323631
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Conformation of cyclic analogs of enkephalin. II. Analogs containing a cystine bridge.
    Hall D; Pavitt N
    Biopolymers; 1984 Nov; 23(11 Pt 1):2325-34. PubMed ID: 6498304
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.