These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 15274210)

  • 1. Nickel-catalyzed reductive cyclizations and couplings.
    Montgomery J
    Angew Chem Int Ed Engl; 2004 Jul; 43(30):3890-908. PubMed ID: 15274210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel-on-charcoal-catalyzed aromatic aminations and Kumada couplings: mechanistic and synthetic aspects.
    Tasler S; Lipshutz BH
    J Org Chem; 2003 Feb; 68(4):1190-9. PubMed ID: 12585855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cascade cyclizations and couplings involving nickel enolates.
    Mahandru GM; Skauge AR; Chowdhury SK; Amarasinghe KK; Heeg MJ; Montgomery J
    J Am Chem Soc; 2003 Nov; 125(44):13481-5. PubMed ID: 14583044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nickel-catalyzed reductive coupling of alkynes and epoxides.
    Molinaro C; Jamison TF
    J Am Chem Soc; 2003 Jul; 125(27):8076-7. PubMed ID: 12837057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic implications of nickel-catalyzed reductive coupling of aldehydes and chiral 1,6-enynes.
    Moslin RM; Jamison TF
    Org Lett; 2006 Feb; 8(3):455-8. PubMed ID: 16435858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic Basis for Regioselection and Regiodivergence in Nickel-Catalyzed Reductive Couplings.
    Jackson EP; Malik HA; Sormunen GJ; Baxter RD; Liu P; Wang H; Shareef AR; Montgomery J
    Acc Chem Res; 2015 Jun; 48(6):1736-45. PubMed ID: 25965694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total synthesis of aigialomycin D: surprising chemoselectivity dependence on alkyne structure in nickel-catalyzed cyclizations.
    Chrovian CC; Knapp-Reed B; Montgomery J
    Org Lett; 2008 Mar; 10(5):811-4. PubMed ID: 18254635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective cross-coupling of anhydrides with organozinc reagents: the controlled formation of carbon-carbon bonds through the nucleophilic interception of metalacycles.
    Johnson JB; Rovis T
    Acc Chem Res; 2008 Feb; 41(2):327-38. PubMed ID: 18232665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Access to macrocyclic endocyclic and exocyclic allylic alcohols by nickel-catalyzed reductive cyclization of ynals.
    Knapp-Reed B; Mahandru GM; Montgomery J
    J Am Chem Soc; 2005 Sep; 127(38):13156-7. PubMed ID: 16173738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nickel-catalyzed cyclizations, couplings, and cycloadditions involving three reactive components.
    Montgomery J
    Acc Chem Res; 2000 Jul; 33(7):467-73. PubMed ID: 10913235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand-dependent scope and divergent mechanistic behavior in nickel-catalyzed reductive couplings of aldehydes and alkynes.
    Mahandru GM; Liu G; Montgomery J
    J Am Chem Soc; 2004 Mar; 126(12):3698-9. PubMed ID: 15038707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nickel-catalyzed cyclizations and couplings with vinylzirconium reagents.
    Ni Y; Amarasinghe KK; Montgomery J
    Org Lett; 2002 May; 4(10):1743-5. PubMed ID: 12000288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel-catalyzed [4 + 2] cycloaddition of enones with alkynes.
    Koyama I; Kurahashi T; Matsubara S
    J Am Chem Soc; 2009 Feb; 131(4):1350-1. PubMed ID: 19173659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The promise and challenge of iron-catalyzed cross coupling.
    Sherry BD; Fürstner A
    Acc Chem Res; 2008 Nov; 41(11):1500-11. PubMed ID: 18588321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of vinylcycloheptadienes by the nickel-catalyzed three-component [3 + 2 + 2] cocyclization. Application to the synthesis of polycyclic compounds.
    Komagawa S; Takeuchi K; Sotome I; Azumaya I; Masu H; Yamasaki R; Saito S
    J Org Chem; 2009 May; 74(9):3323-9. PubMed ID: 19348448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insight into Ni(II)-catalyzed cyclization reactions of propargylic compounds with soft nucleophiles: novel indenes formation.
    Gou FR; Bi HP; Guo LN; Guan ZH; Liu XY; Liang YM
    J Org Chem; 2008 May; 73(10):3837-41. PubMed ID: 18410142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radicals in transition metal catalyzed reactions? transition metal catalyzed radical reactions?: a fruitful interplay anyway: part 3: catalysis by group 10 and 11 elements and bimetallic catalysis.
    Jahn U
    Top Curr Chem; 2012; 320():323-451. PubMed ID: 22143611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic cycloisomerization of enynes by using a nickel-zinc-acid system.
    Ikeda S; Daimon N; Sanuki R; Odashima K
    Chemistry; 2006 Feb; 12(6):1797-806. PubMed ID: 16331715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general, iterative, and modular approach toward carbohydrate libraries based on ruthenium-catalyzed oxidative cyclizations.
    Niggemann M; Jelonek A; Biber N; Wuchrer M; Plietker B
    J Org Chem; 2008 Sep; 73(18):7028-36. PubMed ID: 18707173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.