BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15274568)

  • 1. Microstructured Au/TiO2 model catalyst systems.
    Kielbassa S; Kinne M; Behm RJ
    Langmuir; 2004 Aug; 20(16):6644-50. PubMed ID: 15274568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition.
    Chan SC; Barteau MA
    Langmuir; 2005 Jun; 21(12):5588-95. PubMed ID: 15924494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planar Au/TiO2 model catalysts: fabrication, characterization and catalytic activity.
    Eyrich M; Kielbassa S; Diemant T; Biskupek J; Kaiser U; Wiedwald U; Ziemann P; Bansmann J
    Chemphyschem; 2010 May; 11(7):1430-7. PubMed ID: 20379981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic evaluation of highly active supported gold catalysts prepared from monolayer-protected clusters: an experimental Michaelis-Menten approach for determining the oxygen binding constant during CO oxidation catalysis.
    Long CG; Gilbertson JD; Vijayaraghavan G; Stevenson KJ; Pursell CJ; Chandler BD
    J Am Chem Soc; 2008 Aug; 130(31):10103-15. PubMed ID: 18620389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-based multiadsorbate ellipsometric porosimetry for the characterization of mesoporous Pt-TiO2 and Au-TiO2 nanocomposites.
    May RA; Patel MN; Johnston KP; Stevenson KJ
    Langmuir; 2009 Apr; 25(8):4498-509. PubMed ID: 19366222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the morphology and stability of Au nanoparticles on TiO2(110) prepared from micelle-stabilized precursors.
    Kielbassa S; Häbich A; Schnaidt J; Bansmann J; Weigl F; Boyen HG; Ziemann P; Behm RJ
    Langmuir; 2006 Aug; 22(18):7873-80. PubMed ID: 16922577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New method for analysis of nanoparticle geometry in supported fcc metal catalysts with scanning transmission electron microscopy.
    Carlsson A; Puig-Molina A; Janssens TV
    J Phys Chem B; 2006 Mar; 110(11):5286-93. PubMed ID: 16539459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation.
    Zhang X; Wang H; Xu BQ
    J Phys Chem B; 2005 May; 109(19):9678-83. PubMed ID: 16852166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic and geometric properties of Au nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) studied using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM).
    Lopez-Salido I; Lim DC; Dietsche R; Bertram N; Kim YD
    J Phys Chem B; 2006 Jan; 110(3):1128-36. PubMed ID: 16471654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal preparation and photocatalytic activity of mesoporous Au-TiO2 nanocomposite microspheres.
    Yu J; Yue L; Liu S; Huang B; Zhang X
    J Colloid Interface Sci; 2009 Jun; 334(1):58-64. PubMed ID: 19386316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution.
    Arrii S; Morfin F; Renouprez AJ; Rousset JL
    J Am Chem Soc; 2004 Feb; 126(4):1199-205. PubMed ID: 14746491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction.
    Rodriguez JA; Ma S; Liu P; Hrbek J; Evans J; Pérez M
    Science; 2007 Dec; 318(5857):1757-60. PubMed ID: 18079397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Support effect in high activity gold catalysts for CO oxidation.
    Comotti M; Li WC; Spliethoff B; Schüth F
    J Am Chem Soc; 2006 Jan; 128(3):917-24. PubMed ID: 16417382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of TiO2 nanoparticles on the Au(111) surface.
    Biener J; Farfan-Arribas E; Biener M; Friend CM; Madix RJ
    J Chem Phys; 2005 Sep; 123(9):94705. PubMed ID: 16164360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the precipitation agent in the deposition-precipitation on the formation and properties of Au nanoparticles supported on Al2O3.
    Radnik J; Wilde L; Schneider M; Pohl MM; Herein D
    J Phys Chem B; 2006 Nov; 110(47):23688-93. PubMed ID: 17125328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: a cooperative effect between gold and the support.
    Boronat M; Concepción P; Corma A; González S; Illas F; Serna P
    J Am Chem Soc; 2007 Dec; 129(51):16230-7. PubMed ID: 18052067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing.
    Tan BJ; Sow CH; Koh TS; Chin KC; Wee AT; Ong CK
    J Phys Chem B; 2005 Jun; 109(22):11100-9. PubMed ID: 16852354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial bonding of gold nanoparticles on a H-terminated Si(100) substrate obtained by electro- and electroless deposition.
    Zhao L; Siu AC; Petrus JA; He Z; Leung KT
    J Am Chem Soc; 2007 May; 129(17):5730-4. PubMed ID: 17411051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient and recyclable Au nanoparticle-supported palladium(II) interphase catalysts and microwave-assisted alkyne cyclotrimerization reactions in ionic liquids.
    Lin YY; Tsai SC; Yu SJ
    J Org Chem; 2008 Jul; 73(13):4920-8. PubMed ID: 18522419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoinduced desorption of sulfur from gold nanoparticles loaded on metal oxide surfaces.
    Tada H; Soejima T; Ito S; Kobayashi H
    J Am Chem Soc; 2004 Dec; 126(49):15952-3. PubMed ID: 15584715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.