These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 15274568)
1. Microstructured Au/TiO2 model catalyst systems. Kielbassa S; Kinne M; Behm RJ Langmuir; 2004 Aug; 20(16):6644-50. PubMed ID: 15274568 [TBL] [Abstract][Full Text] [Related]
2. Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition. Chan SC; Barteau MA Langmuir; 2005 Jun; 21(12):5588-95. PubMed ID: 15924494 [TBL] [Abstract][Full Text] [Related]
3. Planar Au/TiO2 model catalysts: fabrication, characterization and catalytic activity. Eyrich M; Kielbassa S; Diemant T; Biskupek J; Kaiser U; Wiedwald U; Ziemann P; Bansmann J Chemphyschem; 2010 May; 11(7):1430-7. PubMed ID: 20379981 [TBL] [Abstract][Full Text] [Related]
4. Kinetic evaluation of highly active supported gold catalysts prepared from monolayer-protected clusters: an experimental Michaelis-Menten approach for determining the oxygen binding constant during CO oxidation catalysis. Long CG; Gilbertson JD; Vijayaraghavan G; Stevenson KJ; Pursell CJ; Chandler BD J Am Chem Soc; 2008 Aug; 130(31):10103-15. PubMed ID: 18620389 [TBL] [Abstract][Full Text] [Related]
5. Flow-based multiadsorbate ellipsometric porosimetry for the characterization of mesoporous Pt-TiO2 and Au-TiO2 nanocomposites. May RA; Patel MN; Johnston KP; Stevenson KJ Langmuir; 2009 Apr; 25(8):4498-509. PubMed ID: 19366222 [TBL] [Abstract][Full Text] [Related]
6. On the morphology and stability of Au nanoparticles on TiO2(110) prepared from micelle-stabilized precursors. Kielbassa S; Häbich A; Schnaidt J; Bansmann J; Weigl F; Boyen HG; Ziemann P; Behm RJ Langmuir; 2006 Aug; 22(18):7873-80. PubMed ID: 16922577 [TBL] [Abstract][Full Text] [Related]
7. New method for analysis of nanoparticle geometry in supported fcc metal catalysts with scanning transmission electron microscopy. Carlsson A; Puig-Molina A; Janssens TV J Phys Chem B; 2006 Mar; 110(11):5286-93. PubMed ID: 16539459 [TBL] [Abstract][Full Text] [Related]
8. Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation. Zhang X; Wang H; Xu BQ J Phys Chem B; 2005 May; 109(19):9678-83. PubMed ID: 16852166 [TBL] [Abstract][Full Text] [Related]
9. Electronic and geometric properties of Au nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) studied using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM). Lopez-Salido I; Lim DC; Dietsche R; Bertram N; Kim YD J Phys Chem B; 2006 Jan; 110(3):1128-36. PubMed ID: 16471654 [TBL] [Abstract][Full Text] [Related]
10. Hydrothermal preparation and photocatalytic activity of mesoporous Au-TiO2 nanocomposite microspheres. Yu J; Yue L; Liu S; Huang B; Zhang X J Colloid Interface Sci; 2009 Jun; 334(1):58-64. PubMed ID: 19386316 [TBL] [Abstract][Full Text] [Related]
11. Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution. Arrii S; Morfin F; Renouprez AJ; Rousset JL J Am Chem Soc; 2004 Feb; 126(4):1199-205. PubMed ID: 14746491 [TBL] [Abstract][Full Text] [Related]
12. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Rodriguez JA; Ma S; Liu P; Hrbek J; Evans J; Pérez M Science; 2007 Dec; 318(5857):1757-60. PubMed ID: 18079397 [TBL] [Abstract][Full Text] [Related]
13. Support effect in high activity gold catalysts for CO oxidation. Comotti M; Li WC; Spliethoff B; Schüth F J Am Chem Soc; 2006 Jan; 128(3):917-24. PubMed ID: 16417382 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of TiO2 nanoparticles on the Au(111) surface. Biener J; Farfan-Arribas E; Biener M; Friend CM; Madix RJ J Chem Phys; 2005 Sep; 123(9):94705. PubMed ID: 16164360 [TBL] [Abstract][Full Text] [Related]
15. Influence of the precipitation agent in the deposition-precipitation on the formation and properties of Au nanoparticles supported on Al2O3. Radnik J; Wilde L; Schneider M; Pohl MM; Herein D J Phys Chem B; 2006 Nov; 110(47):23688-93. PubMed ID: 17125328 [TBL] [Abstract][Full Text] [Related]
16. A Molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: a cooperative effect between gold and the support. Boronat M; Concepción P; Corma A; González S; Illas F; Serna P J Am Chem Soc; 2007 Dec; 129(51):16230-7. PubMed ID: 18052067 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing. Tan BJ; Sow CH; Koh TS; Chin KC; Wee AT; Ong CK J Phys Chem B; 2005 Jun; 109(22):11100-9. PubMed ID: 16852354 [TBL] [Abstract][Full Text] [Related]
18. Interfacial bonding of gold nanoparticles on a H-terminated Si(100) substrate obtained by electro- and electroless deposition. Zhao L; Siu AC; Petrus JA; He Z; Leung KT J Am Chem Soc; 2007 May; 129(17):5730-4. PubMed ID: 17411051 [TBL] [Abstract][Full Text] [Related]
19. Highly efficient and recyclable Au nanoparticle-supported palladium(II) interphase catalysts and microwave-assisted alkyne cyclotrimerization reactions in ionic liquids. Lin YY; Tsai SC; Yu SJ J Org Chem; 2008 Jul; 73(13):4920-8. PubMed ID: 18522419 [TBL] [Abstract][Full Text] [Related]
20. Photoinduced desorption of sulfur from gold nanoparticles loaded on metal oxide surfaces. Tada H; Soejima T; Ito S; Kobayashi H J Am Chem Soc; 2004 Dec; 126(49):15952-3. PubMed ID: 15584715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]