These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 15274582)

  • 1. Synthesis and nanostructure of strong polyelectrolyte brushes in amphiphilic diblock copolymer monolayers on a water surface.
    Kaewsaiha P; Matsumoto K; Matsuoka H
    Langmuir; 2004 Aug; 20(16):6754-61. PubMed ID: 15274582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt effect on the nanostructure of strong polyelectrolyte brushes in amphiphilic diblock copolymer monolayers on the water surface.
    Kaewsaiha P; Matsumoto K; Matsuoka H
    Langmuir; 2007 Jun; 23(13):7065-71. PubMed ID: 17511483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of salt concentration on the nanostructure of weak polyacid brush in the amphiphilic polymer monolayer at the air/water interface.
    Mouri E; Kaewsaiha P; Matsumoto K; Matsuoka H; Torikai N
    Langmuir; 2004 Nov; 20(24):10604-11. PubMed ID: 15544391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-surface activity and micellization of ionic amphiphilic diblock copolymers in water. Hydrophobic chain length dependence and salt effect on surface activity and the critical micelle concentration.
    Kaewsaiha P; Matsumoto K; Matsuoka H
    Langmuir; 2005 Oct; 21(22):9938-45. PubMed ID: 16229512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructure and transition of a strong polyelectrolyte brush at the air/water interface.
    Kaewsaiha P; Matsumoto K; Matsuoka H
    Langmuir; 2007 Jan; 23(1):20-4. PubMed ID: 17190479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructure of a poly(acrylic acid) brush and its transition in the amphiphilic diblock copolymer monolayer on the water surface.
    Matsuoka H; Suetomi Y; Kaewsaiha P; Matsumoto K
    Langmuir; 2009 Dec; 25(24):13752-62. PubMed ID: 19583229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructure of a "carpet"-like dense layer/polyelectrolyte brush layer in a block copolymer monolayer at the air-water interface.
    Mouri E; Matsumoto K; Matsuoka H; Torikai N
    Langmuir; 2005 Mar; 21(5):1840-7. PubMed ID: 15723480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical brush density for the transition between carpet-only and carpet/brush double-layered structures.
    Matsuoka H; Furuya Y; Kaewsaiha P; Mouri E; Matsumoto K
    Langmuir; 2005 Jul; 21(15):6842-5. PubMed ID: 16008395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophilic chain length dependence of the ionic amphiphilic polymer monolayer structure at the air/water interface.
    Mouri E; Furuya Y; Matsumoto K; Matsuoka H
    Langmuir; 2004 Sep; 20(19):8062-7. PubMed ID: 15350073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructure and salt effect of zwitterionic carboxybetaine brush at the air/water interface.
    Matsuoka H; Yamakawa Y; Ghosh A; Saruwatari Y
    Langmuir; 2015 May; 31(17):4827-36. PubMed ID: 25867972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micellization of non-surface-active diblock copolymers in water. Special characteristics of poly(styrene)-block-poly(styrenesulfonate).
    Matsuoka H; Maeda S; Kaewsaiha P; Matsumoto K
    Langmuir; 2004 Aug; 20(18):7412-21. PubMed ID: 15323484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sphere-to-rod transition of non-surface-active amphiphilic diblock copolymer micelles: a small-angle neutron scattering study.
    Kaewsaiha P; Matsumoto K; Matsuoka H
    Langmuir; 2007 Aug; 23(18):9162-9. PubMed ID: 17676775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association behavior of fluorine-containing and non-fluorine-containing methacrylate-based amphiphilic diblock copolymer in aqueous media.
    Matsumoto K; Ishizuka T; Harada T; Matsuoka H
    Langmuir; 2004 Aug; 20(17):7270-82. PubMed ID: 15301515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double-polyelectrolyte, like-charged amphiphilic diblock copolymers: swollen structures and pH- and salt-dependent lyotropic behavior.
    Bendejacq DD; Ponsinet V
    J Phys Chem B; 2008 Jul; 112(27):7996-8009. PubMed ID: 18598008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of secondary interactions during the formation of polyelectrolyte multilayers: layer thickness, bound water and layer interpenetration.
    Gopinadhan M; Ivanova O; Ahrens H; Günther JU; Steitz R; Helm CA
    J Phys Chem B; 2007 Jul; 111(29):8426-34. PubMed ID: 17461567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium and nonequilibrium features in the morphology and structure of physisorbed polyelectrolyte layers.
    Block S; Helm CA
    J Phys Chem B; 2011 Jun; 115(22):7301-13. PubMed ID: 21591686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrolyte-induced collapse of a polyelectrolyte brush.
    Biesalski M; Johannsmann D; Rühe J
    J Chem Phys; 2004 May; 120(18):8807-14. PubMed ID: 15267812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual salt stability in highly charged diblock co-polypeptide hydrogels.
    Nowak AP; Breedveld V; Pine DJ; Deming TJ
    J Am Chem Soc; 2003 Dec; 125(50):15666-70. PubMed ID: 14664616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the origins of the salt-concentration-dependent instability and lateral nanoscale heterogeneities of weak polyelectrolyte brushes: gradient brush experiment and Flory-type theoretical analysis.
    Hur J; Witte KN; Sun W; Won YY
    Langmuir; 2010 Feb; 26(3):2021-34. PubMed ID: 20099924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.