These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 1527476)
1. Formation of monohydroxy derivatives of arachidonic acid, linoleic acid, and oleic acid during oxidation of low density lipoprotein by copper ions and endothelial cells. Wang T; Yu WG; Powell WS J Lipid Res; 1992 Apr; 33(4):525-37. PubMed ID: 1527476 [TBL] [Abstract][Full Text] [Related]
2. Lipid hydroperoxy and hydroxy derivatives in copper-catalyzed oxidation of low density lipoprotein. Lenz ML; Hughes H; Mitchell JR; Via DP; Guyton JR; Taylor AA; Gotto AM; Smith CV J Lipid Res; 1990 Jun; 31(6):1043-50. PubMed ID: 2373954 [TBL] [Abstract][Full Text] [Related]
3. Increased levels of monohydroxy metabolites of arachidonic acid and linoleic acid in LDL and aorta from atherosclerotic rabbits. Wang T; Powell WS Biochim Biophys Acta; 1991 Jul; 1084(2):129-38. PubMed ID: 1854797 [TBL] [Abstract][Full Text] [Related]
4. Metabolism of linoleic and arachidonic acids in VX2 carcinoma tissue: identification of monohydroxy octadecadienoic acids and monohydroxy eicosatetraenoic acids. Hubbard WC; Hough AJ; Brash AR; Watson JT; Oates JA Prostaglandins; 1980 Sep; 20(3):431-47. PubMed ID: 6775354 [TBL] [Abstract][Full Text] [Related]
6. Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apolipoprotein B by products of fatty acid peroxidation. Steinbrecher UP; Lougheed M; Kwan WC; Dirks M J Biol Chem; 1989 Sep; 264(26):15216-23. PubMed ID: 2768257 [TBL] [Abstract][Full Text] [Related]
7. Low density lipoprotein rich in oleic acid is protected against oxidative modification: implications for dietary prevention of atherosclerosis. Parthasarathy S; Khoo JC; Miller E; Barnett J; Witztum JL; Steinberg D Proc Natl Acad Sci U S A; 1990 May; 87(10):3894-8. PubMed ID: 2339129 [TBL] [Abstract][Full Text] [Related]
8. Cell-mediated oxidation of LDL: comparison of different cell types of the atherosclerotic lesion. Müller K; Carpenter KL; Mitchinson MJ Free Radic Res; 1998 Sep; 29(3):207-20. PubMed ID: 9802552 [TBL] [Abstract][Full Text] [Related]
9. Activation of 15-lipoxygenase by low density lipoprotein in vascular endothelial cells. Relationship to the oxidative modification of low density lipoprotein. Derian CK; Lewis DF Prostaglandins Leukot Essent Fatty Acids; 1992 Jan; 45(1):49-57. PubMed ID: 1546066 [TBL] [Abstract][Full Text] [Related]
10. Iron induces lipid peroxidation in cultured macrophages, increases their ability to oxidatively modify LDL, and affects their secretory properties. Fuhrman B; Oiknine J; Aviram M Atherosclerosis; 1994 Nov; 111(1):65-78. PubMed ID: 7840815 [TBL] [Abstract][Full Text] [Related]
11. Oxidation resistance, oxidation rate, and extent of oxidation of human low-density lipoprotein depend on the ratio of oleic acid content to linoleic acid content: studies in vitamin E deficient subjects. Kleinveld HA; Naber AH; Stalenhoef AF; Demacker PN Free Radic Biol Med; 1993 Sep; 15(3):273-80. PubMed ID: 8406127 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms involved in the in vitro modification of low density lipoprotein by human umbilical vein endothelial cells and copper ions. Cominacini L; Garbin U; De Santis A; Campagnola M; Davoli A; Pasini AF; Faccini G; Pasqualini E; Bertozzo L; Micciolo R; Pastorino AM; Lo Cascio V J Lipid Mediat Cell Signal; 1996 Jan; 13(1):19-33. PubMed ID: 8821808 [TBL] [Abstract][Full Text] [Related]
13. Production of oxidized lipids during modification of low-density lipoprotein by macrophages or copper. Carpenter KL; Wilkins GM; Fussell B; Ballantine JA; Taylor SE; Mitchinson MJ; Leake DS Biochem J; 1994 Dec; 304 ( Pt 2)(Pt 2):625-33. PubMed ID: 7999000 [TBL] [Abstract][Full Text] [Related]
14. Peroxidation of linoleic, arachidonic and oleic acid in relation to the induction of oxidative DNA damage and cytogenetic effects. de Kok TM; ten Vaarwerk F; Zwingman I; van Maanen JM; Kleinjans JC Carcinogenesis; 1994 Jul; 15(7):1399-404. PubMed ID: 8033317 [TBL] [Abstract][Full Text] [Related]
15. Prostaglandin F2-like compounds, F2-isoprostanes, are present in increased amounts in human atherosclerotic lesions. Gniwotta C; Morrow JD; Roberts LJ; Kühn H Arterioscler Thromb Vasc Biol; 1997 Nov; 17(11):3236-41. PubMed ID: 9409317 [TBL] [Abstract][Full Text] [Related]
16. LDL isolated from Greek subjects on a typical diet or from American subjects on an oleate-supplemented diet induces less monocyte chemotaxis and adhesion when exposed to oxidative stress. Tsimikas S; Philis-Tsimikas A; Alexopoulos S; Sigari F; Lee C; Reaven PD Arterioscler Thromb Vasc Biol; 1999 Jan; 19(1):122-30. PubMed ID: 9888874 [TBL] [Abstract][Full Text] [Related]
17. The susceptibility of low-density lipoprotein to in vitro oxidation is increased in hypercholesterolemic patients. Cominacini L; Pastorino AM; Garbin U; Campagnola M; de Santis A; Davoli A; Faccini G; Bertozzo L; Pasini F; Pasini AF Nutrition; 1994; 10(6):527-31. PubMed ID: 7703599 [TBL] [Abstract][Full Text] [Related]
18. Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid. Winterbourn CC; van den Berg JJ; Roitman E; Kuypers FA Arch Biochem Biophys; 1992 Aug; 296(2):547-55. PubMed ID: 1321589 [TBL] [Abstract][Full Text] [Related]
19. Monitoring of lipoprotein oxidation by gas chromatographic analysis of hydroxy fatty acids. Nikkari T; Malo-Ranta U; Hiltunen T; Jaakkola O; Ylä-Herttuala S J Lipid Res; 1995 Jan; 36(1):200-7. PubMed ID: 7706944 [TBL] [Abstract][Full Text] [Related]
20. Predominance of esterified hydroperoxy-linoleic acid in human monocyte-oxidized LDL. Folcik VA; Cathcart MK J Lipid Res; 1994 Sep; 35(9):1570-82. PubMed ID: 7806971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]