These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 15274923)
21. Structural changes during the photocycle of photoactive yellow protein monitored by ultraviolet resonance raman spectra of tyrosine and tryptophan. El-Mashtoly SF; Yamauchi S; Kumauchi M; Hamada N; Tokunaga F; Unno M J Phys Chem B; 2005 Dec; 109(49):23666-73. PubMed ID: 16375346 [TBL] [Abstract][Full Text] [Related]
22. Ultrafast spectroscopy of biological photoreceptors. Kennis JT; Groot ML Curr Opin Struct Biol; 2007 Oct; 17(5):623-30. PubMed ID: 17959372 [TBL] [Abstract][Full Text] [Related]
23. Structure of the I1 early intermediate of photoactive yellow protein by FTIR spectroscopy. Brudler R; Rammelsberg R; Woo TT; Getzoff ED; Gerwert K Nat Struct Biol; 2001 Mar; 8(3):265-70. PubMed ID: 11224574 [TBL] [Abstract][Full Text] [Related]
24. Picosecond protein response to the chromophore isomerization of photoactive yellow protein: selective observation of tyrosine and tryptophan residues by time-resolved ultraviolet resonance Raman spectroscopy. Mizuno M; Hamada N; Tokunaga F; Mizutani Y J Phys Chem B; 2007 Jun; 111(23):6293-6. PubMed ID: 17523627 [TBL] [Abstract][Full Text] [Related]
25. Proton transfer and associated molecular rearrangements in the photocycle of photoactive yellow protein: role of water molecular migration on the proton transfer reaction. Kamiya M; Saito S; Ohmine I J Phys Chem B; 2007 Mar; 111(11):2948-56. PubMed ID: 17388419 [TBL] [Abstract][Full Text] [Related]
26. Structural and dynamic changes of photoactive yellow protein during its photocycle in solution. Rubinstenn G; Vuister GW; Mulder FA; Düx PE; Boelens R; Hellingwerf KJ; Kaptein R Nat Struct Biol; 1998 Jul; 5(7):568-70. PubMed ID: 9665170 [TBL] [Abstract][Full Text] [Related]
27. Structural role of tyrosine 98 in photoactive yellow protein: effects on fluorescence, gateway, and photocycle recovery. Kyndt JA; Savvides SN; Memmi S; Koh M; Fitch JC; Meyer TE; Heyn MP; Van Beeumen JJ; Cusanovich MA Biochemistry; 2007 Jan; 46(1):95-105. PubMed ID: 17198379 [TBL] [Abstract][Full Text] [Related]
28. A molecular movie at 1.8 A resolution displays the photocycle of photoactive yellow protein, a eubacterial blue-light receptor, from nanoseconds to seconds. Ren Z; Perman B; Srajer V; Teng TY; Pradervand C; Bourgeois D; Schotte F; Ursby T; Kort R; Wulff M; Moffat K Biochemistry; 2001 Nov; 40(46):13788-801. PubMed ID: 11705368 [TBL] [Abstract][Full Text] [Related]
29. Anharmonic vibrational calculations modeling the raman spectra of intermediates in the photoactive yellow protein (PYP) photocycle. Adesokan AA; Pan D; Fredj E; Mathies RA; Gerber RB J Am Chem Soc; 2007 Apr; 129(15):4584-94. PubMed ID: 17378558 [TBL] [Abstract][Full Text] [Related]
30. Picometer-scale conformational heterogeneity separates functional from nonfunctional states of a photoreceptor protein. Coureux PD; Fan ZP; Stojanoff V; Genick UK Structure; 2008 Jun; 16(6):863-72. PubMed ID: 18547519 [TBL] [Abstract][Full Text] [Related]
31. Helix formation is a dynamical bottleneck in the recovery reaction of Photoactive Yellow Protein. Vreede J; Hellingwerf KJ; Bolhuis PG Proteins; 2008 Jul; 72(1):136-49. PubMed ID: 18214984 [TBL] [Abstract][Full Text] [Related]
32. Chromophore-Removal-Induced Conformational Change in Photoactive Yellow Protein Determined through Spectroscopic and X-ray Solution Scattering Studies. Kim Y; Ganesan P; Jo J; Kim SO; Thamilselvan K; Ihee H J Phys Chem B; 2018 Apr; 122(16):4513-4520. PubMed ID: 29648836 [TBL] [Abstract][Full Text] [Related]
33. Molecular dynamics simulations of photoactive yellow protein (PYP) in three states of its photocycle: a comparison with X-ray and NMR data and analysis of the effects of Glu46 deprotonation and mutation. Antes I; Thiel W; van Gunsteren WF Eur Biophys J; 2002 Dec; 31(7):504-20. PubMed ID: 12451420 [TBL] [Abstract][Full Text] [Related]
34. A molecular dynamics study for the structure determination of the signaling state in the photocycle of photoactive yellow protein. Kamiya M; Ohmine I J Phys Chem B; 2010 May; 114(19):6594-600. PubMed ID: 20411914 [TBL] [Abstract][Full Text] [Related]
35. Identification of six new photoactive yellow proteins--diversity and structure-function relationships in a bacterial blue light photoreceptor. Kumauchi M; Hara MT; Stalcup P; Xie A; Hoff WD Photochem Photobiol; 2008; 84(4):956-69. PubMed ID: 18399917 [TBL] [Abstract][Full Text] [Related]
36. Analysis of experimental time-resolved crystallographic data by singular value decomposition. Rajagopal S; Schmidt M; Anderson S; Ihee H; Moffat K Acta Crystallogr D Biol Crystallogr; 2004 May; 60(Pt 5):860-71. PubMed ID: 15103131 [TBL] [Abstract][Full Text] [Related]
37. Crystal structures of the AppA BLUF domain photoreceptor provide insights into blue light-mediated signal transduction. Jung A; Reinstein J; Domratcheva T; Shoeman RL; Schlichting I J Mol Biol; 2006 Sep; 362(4):717-32. PubMed ID: 16949615 [TBL] [Abstract][Full Text] [Related]
38. Low-temperature spectroscopy of Met100Ala mutant of photoactive yellow protein. Imamoto Y; Harigai M; Morimoto T; Kataoka M Photochem Photobiol; 2008; 84(4):970-6. PubMed ID: 18399916 [TBL] [Abstract][Full Text] [Related]
39. Functional tuning of photoactive yellow protein by active site residue 46. Philip AF; Eisenman KT; Papadantonakis GA; Hoff WD Biochemistry; 2008 Dec; 47(52):13800-10. PubMed ID: 19102703 [TBL] [Abstract][Full Text] [Related]
40. From primary photochemistry to biological function in the blue-light photoreceptors PYP and AppA. van der Horst MA; Laan W; Yeremenko S; Wende A; Palm P; Oesterhelt D; Hellingwerf KJ Photochem Photobiol Sci; 2005 Sep; 4(9):688-93. PubMed ID: 16121278 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]