These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 1527513)
1. The possible role of ADP-ribosylation in sporulation and streptomycin production by Streptomyces griseus. Ochi K; Penyige A; Barabas G J Gen Microbiol; 1992 Aug; 138 Pt 8():1745-50. PubMed ID: 1527513 [TBL] [Abstract][Full Text] [Related]
2. Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: significance of the stringent response (ppGpp) and GTP content in relation to A factor. Ochi K J Bacteriol; 1987 Aug; 169(8):3608-16. PubMed ID: 3112126 [TBL] [Abstract][Full Text] [Related]
3. Changes in patterns of ADP-ribosylated proteins during differentiation of Streptomyces coelicolor A3(2) and its development mutants. Shima J; Penyige A; Ochi K J Bacteriol; 1996 Jul; 178(13):3785-90. PubMed ID: 8682781 [TBL] [Abstract][Full Text] [Related]
4. The possible role of ADP ribosylation in physiological regulation of sporulation in Streptomyces griseus. Penyige A; Vargha G; Ensign JC; Barabás G Gene; 1992 Jun; 115(1-2):181-5. PubMed ID: 1612434 [TBL] [Abstract][Full Text] [Related]
5. ADP-ribosylation of proteins in Bacillus subtilis and its possible importance in sporulation. Huh JW; Shima J; Ochi K J Bacteriol; 1996 Aug; 178(16):4935-41. PubMed ID: 8759858 [TBL] [Abstract][Full Text] [Related]
6. Evidence of a role for NAD+-glycohydrolase and ADP-ribosyltransferase in growth and differentiation of Streptomyces griseus NRRL B-2682: inhibition by m-aminophenylboronic acid. Penyige A; Deák E; Kálmánczhelyi A; Barabás G Microbiology (Reading); 1996 Aug; 142 ( Pt 8)():1937-44. PubMed ID: 8800814 [TBL] [Abstract][Full Text] [Related]
7. [Effect of the A-factor on the adenylate level in Streptomyces griseus]. Vasilenko TI; Tovarova II; Khokhlov AS Prikl Biokhim Mikrobiol; 1983; 19(3):356-61. PubMed ID: 6410372 [TBL] [Abstract][Full Text] [Related]
8. The A-factor-binding protein of Streptomyces griseus negatively controls streptomycin production and sporulation. Miyake K; Kuzuyama T; Horinouchi S; Beppu T J Bacteriol; 1990 Jun; 172(6):3003-8. PubMed ID: 2111804 [TBL] [Abstract][Full Text] [Related]
9. Genetic segregation in a high-yielding streptomycin-producing strain of Streptomyces griseus. Roth M; Schwalenberg B; Reiche R; Noack D; Geuther R; Eritt I Z Allg Mikrobiol; 1982; 22(8):557-63. PubMed ID: 6819723 [TBL] [Abstract][Full Text] [Related]
12. Streptomyces relC mutants with an altered ribosomal protein ST-L11 and genetic analysis of a Streptomyces griseus relC mutant. Ochi K J Bacteriol; 1990 Jul; 172(7):4008-16. PubMed ID: 2113916 [TBL] [Abstract][Full Text] [Related]
13. Possible role of streptomycin released from spore cell wall of Streptomyces griseus. Szabó I; Benedek A; Barabás G Appl Environ Microbiol; 1985 Aug; 50(2):438-40. PubMed ID: 3931550 [TBL] [Abstract][Full Text] [Related]
14. Expression analysis of the ssgA gene product, associated with sporulation and cell division in Streptomyces griseus. Kawamoto S; Watanabe H; Hesketh A; Ensign JC; Ochi K Microbiology (Reading); 1997 Apr; 143 ( Pt 4)():1077-1086. PubMed ID: 9141673 [TBL] [Abstract][Full Text] [Related]
15. Modification of glutamine synthetase in Streptomyces griseus by ADP-ribosylation and adenylylation. Penyige A; Kálmánczhelyi A; Sipos A; Ensign JC; Barabás G Biochem Biophys Res Commun; 1994 Oct; 204(2):598-605. PubMed ID: 7980520 [TBL] [Abstract][Full Text] [Related]
16. Possible involvement of cAMP in aerial mycelium formation and secondary metabolism in Streptomyces griseus. Kang DK; Li XM; Ochi K; Horinouchi S Microbiology (Reading); 1999 May; 145 ( Pt 5)():1161-1172. PubMed ID: 10376832 [TBL] [Abstract][Full Text] [Related]
17. [New type of sporulation regulation and streptomycin biosynthesis in secondary Streptomyces griseus mutants]. Efremenkova OV; Anisova LN; Khokhlov AS Izv Akad Nauk SSSR Biol; 1981; (4):573-82. PubMed ID: 6792249 [No Abstract] [Full Text] [Related]
18. Biochemical characteristics of non-streptomycin-producing mutants of Streptomyces griseus. I. Role of NAD (P)-glycohydrolase in cell differentiation. Gräfe U; Roth M; Christner A; Bormann EJ Z Allg Mikrobiol; 1981; 21(9):633-42. PubMed ID: 6801874 [TBL] [Abstract][Full Text] [Related]
19. Protein acetylation involved in streptomycin biosynthesis in Streptomyces griseus. Ishigaki Y; Akanuma G; Yoshida M; Horinouchi S; Kosono S; Ohnishi Y J Proteomics; 2017 Feb; 155():63-72. PubMed ID: 28034645 [TBL] [Abstract][Full Text] [Related]
20. Molecular analysis of the ribosomal L11 protein gene (rplK = relC) of Streptomyces griseus and identification of a deletion allele. Kawamoto S; Zhang D; Ochi K Mol Gen Genet; 1997 Aug; 255(6):549-60. PubMed ID: 9323358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]