These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 152758)

  • 21. Effect of specific growth limitations on cell wall composition of Staphylococcus aureus H.
    Dobson BC; Archibald AR
    Arch Microbiol; 1978 Dec; 119(3):295-301. PubMed ID: 736712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Lytic action of lysoamidase from Xanthomonas sp. correlates with the presence of the target ribitol teichoic acids in the cell wall of gram-positive bacteria].
    Kulaev IS; Naumova IB; Streshinskaia GM; Tul'skaia EM; Stepnaia OA; Severin AI; Begunova EA
    Mikrobiologiia; 1996; 65(3):326-32. PubMed ID: 8992241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methicillin-resistant strains of Staphylococcus aureus phage type 92.
    Schaefler S; Perry W; Jones D
    Antimicrob Agents Chemother; 1979 Jan; 15(1):74-80. PubMed ID: 154874
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supplementary phages for the investigation of strains of methicillin-resistant Staphylococcus aureus.
    Richardson JF; Chittasobhon N; Marples RR
    J Med Microbiol; 1988 Jan; 25(1):67-74. PubMed ID: 2961889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of alanyl ester residues on the binding of magnesium ions to teichoic acids.
    Lambert PA; Hancock IC; Baddiley J
    Biochem J; 1975 Dec; 151(3):671-6. PubMed ID: 1218094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of bacteriophage-resistant mutants to study the nature of the bacteriophage receptor site of Staphylococcus aureus.
    Chatterjee AN
    J Bacteriol; 1969 May; 98(2):519-27. PubMed ID: 4239385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of linkage region between ribitol teichoic acid and peptidoglycan in cell walls of Staphylococcus aureus H.
    Kojima N; Araki Y; Ito E
    J Biol Chem; 1983 Aug; 258(15):9043-5. PubMed ID: 6874676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell walls of methicillin-resistant Staphylococcus aureus.
    Sabath LD; Leaf CD; Gerstein DA; Finland M
    Antimicrob Agents Chemother (Bethesda); 1969; 9():73-7. PubMed ID: 5202412
    [No Abstract]   [Full Text] [Related]  

  • 29. Studies on the chemistry and immunochemistry of cell walls of Staphylococcus aureus.
    MORSE SI
    J Exp Med; 1962 Aug; 116(2):229-45. PubMed ID: 14476345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exposure of Staphylococcus aureus to Targocil Blocks Translocation of the Major Autolysin Atl across the Membrane, Resulting in a Significant Decrease in Autolysis.
    Tiwari KB; Gatto C; Walker S; Wilkinson BJ
    Antimicrob Agents Chemother; 2018 Jul; 62(7):. PubMed ID: 29735561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extracellular protein A from a methicillin-resistant strain of Staphylococcus aureus.
    Lindmark R; Movitz J; Sjöquist J
    Eur J Biochem; 1977 Apr; 74(3):623-8. PubMed ID: 585340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell wall structure of coagulase-negative staphylococci and its relation to adsorption of phages.
    Schumacher-Perdreau F; Pulverer G; Schleifer KH
    Zentralbl Bakteriol Orig A; 1978 Jul; 241(1):3-7. PubMed ID: 151455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Defect in biosynthesis of the linkage unit between peptidoglycan and teichoic acid in a bacteriophage-resistant mutant of Staphylococcus aureus.
    Bracha R; Davidson R; Mirelman D
    J Bacteriol; 1978 May; 134(2):412-7. PubMed ID: 149106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Staphylococcus aureus resistance to antibiotics and spread of phage types.
    Kareiviene V; Pavilonis A; Sinkute G; Liegiūte S; Gailiene G
    Medicina (Kaunas); 2006; 42(4):332-9. PubMed ID: 16687905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of peptidoglycan in vivo in methicillin-resistant Staphylococcus aureus.
    Wyke AW; Ward JB; Hayes MV
    Eur J Biochem; 1982 Oct; 127(3):553-8. PubMed ID: 7173195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Cell wall components in Staphylococcus aureus with double resistance to gramicidin S and actinomycin D].
    Orlova TI; Bulgakova VG; Polin AN; Grushina VA
    Antibiot Khimioter; 2007; 52(6):3-8. PubMed ID: 18476467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell wall composition and decreased autolytic activity and lysostaphin susceptibility of glycopeptide-intermediate Staphylococcus aureus.
    Koehl JL; Muthaiyan A; Jayaswal RK; Ehlert K; Labischinski H; Wilkinson BJ
    Antimicrob Agents Chemother; 2004 Oct; 48(10):3749-57. PubMed ID: 15388430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nontypeable bacteriophage patterns of methicillin-resistant Staphylococcus aureus involved in a hospital outbreak.
    Khalifa KI; Heiba AA; Hancock G
    J Clin Microbiol; 1989 Oct; 27(10):2249-51. PubMed ID: 2531157
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Characteristics of the composition of higher fatty acids in methicillin-resistant and methicillin-sensitive Staphylococci].
    Pinchuk LM; Degteva GK; Samoĭlova LN
    Antibiotiki; 1983 Jun; 28(6):412-7. PubMed ID: 6881950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pathogenicity and virulence of methicillin resistant Staphylococcus aureus: slime layer production.
    Rozgonyi F; Seltmann G
    Acta Microbiol Hung; 1985; 32(2):155-65. PubMed ID: 3851620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.