These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 15276714)
41. Automated combustion accelerator mass spectrometry for the analysis of biomedical samples in the low attomole range. van Duijn E; Sandman H; Grossouw D; Mocking JA; Coulier L; Vaes WH Anal Chem; 2014 Aug; 86(15):7635-41. PubMed ID: 25033319 [TBL] [Abstract][Full Text] [Related]
42. Accelerator mass spectrometry analysis of background (14)C-concentrations in human blood: aiming at reference data for further microdosing studies. Minamimoto R; Hamabe Y; Miyaoka T; Hara T; Yoshida K; Oka T; Inoue T Ann Nucl Med; 2008 Dec; 22(10):883-9. PubMed ID: 19142707 [TBL] [Abstract][Full Text] [Related]
43. [Application of liquid chromatography-high resolution mass spectrometry in toxicological screening]. Li XW; Shen BH; Zhuo XY Fa Yi Xue Za Zhi; 2011 Oct; 27(5):376-81. PubMed ID: 22259869 [TBL] [Abstract][Full Text] [Related]
44. A validation study comparing accelerator MS and liquid scintillation counting for analysis of 14C-labelled drugs in plasma, urine and faecal extracts. Garner RC; Barker J; Flavell C; Garner JV; Whattam M; Young GC; Cussans N; Jezequel S; Leong D J Pharm Biomed Anal; 2000 Dec; 24(2):197-209. PubMed ID: 11130199 [TBL] [Abstract][Full Text] [Related]
45. Analytical performance of accelerator mass spectrometry and liquid scintillation counting for detection of 14C-labeled atrazine metabolites in human urine. Gilman SD; Gee SJ; Hammock BD; Vogel JS; Haack K; Buchholz BA; Freeman SP; Wester RC; Hui X; Maibach HI Anal Chem; 1998 Aug; 70(16):3463-9. PubMed ID: 9726169 [TBL] [Abstract][Full Text] [Related]
46. Sample preparation for quantitation of tritium by accelerator mass spectrometry. Chiarappa-Zucca ML; Dingley KH; Roberts ML; Velsko CA; Love AH Anal Chem; 2002 Dec; 74(24):6285-90. PubMed ID: 12510750 [TBL] [Abstract][Full Text] [Related]
48. Application of inductively coupled plasma sector field mass spectrometry for low-level environmental americium-241 analysis. Varga Z Anal Chim Acta; 2007 Mar; 587(2):165-9. PubMed ID: 17386769 [TBL] [Abstract][Full Text] [Related]
49. [Mass spectrometry and combined techniques in medicine, clinical chemistry and clinical biochemistry. Report on the conference at the Medizinische Klinik of the University of Tübingen on November 14--15, 1977 (author's transl)]. Liebich HM J Clin Chem Clin Biochem; 1978 Dec; 16(12):677-86. PubMed ID: 739237 [TBL] [Abstract][Full Text] [Related]
50. Identification of metabolism pathways of anticancer drugs by high-pressure liquid chromatography in combination with field desorption mass spectrometry. Przybylski M Arzneimittelforschung; 1982; 32(9):995-1012. PubMed ID: 6756419 [TBL] [Abstract][Full Text] [Related]
51. Precision and accuracy in the quantitative analysis of biological samples by accelerator mass spectrometry: application in microdose absolute bioavailability studies. Gao L; Li J; Kasserra C; Song Q; Arjomand A; Hesk D; Chowdhury SK Anal Chem; 2011 Jul; 83(14):5607-16. PubMed ID: 21627104 [TBL] [Abstract][Full Text] [Related]
52. Accelerator mass spectrometry-enabled studies: current status and future prospects. Arjomand A Bioanalysis; 2010 Mar; 2(3):519-41. PubMed ID: 20440378 [TBL] [Abstract][Full Text] [Related]
53. Use of DNA adducts to identify human health risk from exposure to hazardous environmental pollutants: the increasing role of mass spectrometry in assessing biologically effective doses of genotoxic carcinogens. Farmer PB; Singh R Mutat Res; 2008; 659(1-2):68-76. PubMed ID: 18468947 [TBL] [Abstract][Full Text] [Related]
54. [Dating and measurements of radioactive isotopes with accelerator mass spectrometry]. Nakai N; Nakamura T Radioisotopes; 1983 Dec; 32(12):645-55. PubMed ID: 6374773 [No Abstract] [Full Text] [Related]
55. Current perspectives of 14C-isotope measurement in biomedical accelerator mass spectrometry. Lappin G; Garner RC Anal Bioanal Chem; 2004 Jan; 378(2):356-64. PubMed ID: 14624324 [TBL] [Abstract][Full Text] [Related]
56. Novel use of accelerator mass spectrometry for the quantification of low levels of systemic therapeutic recombinant protein. Lappin G; Garner RC; Meyers T; Powell J; Varley P J Pharm Biomed Anal; 2006 Jun; 41(4):1299-302. PubMed ID: 16554138 [TBL] [Abstract][Full Text] [Related]
57. Subattomole sensitivity in biological accelerator mass spectrometry. Salehpour M; Possnert G; Bryhni H Anal Chem; 2008 May; 80(10):3515-21. PubMed ID: 18422337 [TBL] [Abstract][Full Text] [Related]
58. Pharmacokinetic analysis of 14C-ursodiol in newborn infants using accelerator mass spectrometry. Gordi T; Baillie R; Vuong le T; Abidi S; Dueker S; Vasquez H; Pegis P; Hopper AO; Power GG; Blood AB J Clin Pharmacol; 2014 Sep; 54(9):1031-7. PubMed ID: 24805288 [TBL] [Abstract][Full Text] [Related]
59. Detection of adriamycin-DNA adducts by accelerator mass spectrometry. Coldwell K; Cutts SM; Ognibene TJ; Henderson PT; Phillips DR Methods Mol Biol; 2010; 613():103-18. PubMed ID: 19997880 [TBL] [Abstract][Full Text] [Related]
60. Accelerator mass spectrometry for the detection of ultra-low levels of plutonium in urine, including that excreted after the ingestion of Irish sea sediments. Priest ND; Pich GM; Fifield LK; Cresswell RG Radiat Res; 1999 Dec; 152(6 Suppl):S16-8. PubMed ID: 10564928 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]