BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15276737)

  • 1. Predicting the effect of livestock inputs of E. coli on microbiological compliance of bathing waters.
    Vinten AJ; Lewis DR; McGechan M; Duncan A; Aitken M; Hill C; Crawford C
    Water Res; 2004; 38(14-15):3215-24. PubMed ID: 15276737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling.
    Servais P; Garcia-Armisen T; George I; Billen G
    Sci Total Environ; 2007 Apr; 375(1-3):152-67. PubMed ID: 17239424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling bacterial water quality in streams draining pastoral land.
    Collins R; Rutherford K
    Water Res; 2004 Feb; 38(3):700-12. PubMed ID: 14723940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A framework for valuing the health benefits of improved bathing water quality in the River Irvine catchment.
    Johnson EK; Moran D; Vinten AJ
    J Environ Manage; 2008 Jun; 87(4):633-8. PubMed ID: 18155822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the fate of faecal indicators in a coastal basin.
    Kashefipour SM; Lin B; Falconer RA
    Water Res; 2006 Apr; 40(7):1413-25. PubMed ID: 16537086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble modeling of E. coli in the Charles River, Boston, Massachusetts, USA.
    Hellweger FL
    Water Sci Technol; 2007; 56(6):39-46. PubMed ID: 17898442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and evaluation of compliance to water quality regulations in bathing areas on the Daoulas catchment and estuary (France).
    Bougeard M; Le Saux JC; Jouan M; Durand G; Pommepuy M
    Water Sci Technol; 2010; 61(10):2521-30. PubMed ID: 20453324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of agricultural practices and river catchment characteristics on river and bathing water quality.
    Aitken MN
    Water Sci Technol; 2003; 48(10):217-24. PubMed ID: 15137173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A software monitor for intermittent bacteria contamination in urban rivers.
    Mietzel T; Frehmann T; Geiger WF; Schilling W
    Water Sci Technol; 2003; 47(2):165-70. PubMed ID: 12636076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using spatial-stream-network models and long-term data to understand and predict dynamics of faecal contamination in a mixed land-use catchment.
    Neill AJ; Tetzlaff D; Strachan NJC; Hough RL; Avery LM; Watson H; Soulsby C
    Sci Total Environ; 2018 Jan; 612():840-852. PubMed ID: 28881307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The study of diagnostic techniques for the sources of Escherichia coli at Ta-An Beach.
    Hwang HY; Fang HY
    Water Sci Technol; 2009; 60(2):389-98. PubMed ID: 19633381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbiological water quality along the Danube River: integrating data from two whole-river surveys and a transnational monitoring network.
    Kirschner AK; Kavka GG; Velimirov B; Mach RL; Sommer R; Farnleitner AH
    Water Res; 2009 Aug; 43(15):3673-84. PubMed ID: 19552934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical basis for predicting the need for bacterially induced beach closures: Emergence of a paradigm?
    Olyphant GA
    Water Res; 2005 Dec; 39(20):4953-60. PubMed ID: 16290180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Gran alkalinity and calcium concentrations in river waters over a national scale using a novel modification to the G-BASH model.
    Cresser MS; Ahmed N; Smart RP; Arowolo T; Calver LJ; Chapman PJ
    Environ Pollut; 2006 Sep; 143(2):361-6. PubMed ID: 16406625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland.
    Sanders BF; Arega F; Sutula M
    Water Res; 2005 Sep; 39(14):3394-408. PubMed ID: 16051310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining modeling and monitoring to study fecal contamination in a small rural catchment.
    Bougeard M; Le Saux JC; Teillon A; Belloir J; Le Mennec C; Thome S; Durand G; Pommepuy M
    J Water Health; 2011 Sep; 9(3):467-82. PubMed ID: 21976194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial source tracking: a forensic technique for microbial source identification?
    Stapleton CM; Wyer MD; Kay D; Crowther J; McDonald AT; Walters M; Gawler A; Hindle T
    J Environ Monit; 2007 May; 9(5):427-39. PubMed ID: 17492088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of diffuse and point source microbial pollution in the ribble catchment discharging to bathing waters in the north west of England.
    Wither A; Greaves J; Dunhill I; Wyer M; Stapleton C; Kay D; Humphrey N; Watkins J; Francis C; McDonald A; Crowther J
    Water Sci Technol; 2005; 51(3-4):191-8. PubMed ID: 15850190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli pollution in a Baltic Sea lagoon: a model-based source and spatial risk assessment.
    Schippmann B; Schernewski G; Gräwe U
    Int J Hyg Environ Health; 2013 Jul; 216(4):408-20. PubMed ID: 23337127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling Escherichia coli concentrations in the tidal Scheldt river and estuary.
    de Brauwere A; de Brye B; Servais P; Passerat J; Deleersnijder E
    Water Res; 2011 Apr; 45(9):2724-38. PubMed ID: 21435674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.