BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1527709)

  • 21. Postselective (directed) mutagenesis of fast-growing strain of Mycobacterium vaccae as a method of creating mutants showing changed phenotypic properties.
    Sajduda A; Dziadek J; Golańska E; Rumijowska A; Jaworski A
    Acta Microbiol Pol; 1994; 43(2):241-6. PubMed ID: 7530898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Side chain cleavage of sterols by Mycobacterium sp. M12].
    Zhang LQ; Bian EP; Wang Y
    Yao Xue Xue Bao; 1992; 27(12):903-7. PubMed ID: 1299139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization and engineering of 3-ketosteroid-△1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols.
    Yao K; Xu LQ; Wang FQ; Wei DZ
    Metab Eng; 2014 Jul; 24():181-91. PubMed ID: 24831710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. β-Sitosterol Bioconversion to Androstenedione in Microtiter Plates.
    Marques MPC; Fernandes P
    Methods Mol Biol; 2017; 1645():167-176. PubMed ID: 28710628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineered 3-Ketosteroid 9α-Hydroxylases in Mycobacterium neoaurum: an Efficient Platform for Production of Steroid Drugs.
    Liu HH; Xu LQ; Yao K; Xiong LB; Tao XY; Liu M; Wang FQ; Wei DZ
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA-Seq analysis uncovers non-coding small RNA system of Mycobacterium neoaurum in the metabolism of sterols to accumulate steroid intermediates.
    Liu M; Zhu ZT; Tao XY; Wang FQ; Wei DZ
    Microb Cell Fact; 2016 Apr; 15():64. PubMed ID: 27112590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the production of 9α-hydroxy-4-androstene-3,17-dione from phytosterols by 3-ketosteroid-Δ
    Liu X; Zhang J; Yuan C; Du G; Han S; Shi J; Sun J; Zhang B
    Microb Cell Fact; 2023 Mar; 22(1):53. PubMed ID: 36922830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterisation of a new host-vector system for fast-growing mycobacteria.
    Golańska E; Brzostek A; Kiatpapan P; Dziadek J
    Acta Microbiol Pol; 1998; 47(4):335-43. PubMed ID: 10333556
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Conversion of androstenedione and androstadienedione by sterol-degrading bacteria].
    Voĭshvillo NE; Andriushina VA; Savinova TS; Stytsenko TS
    Prikl Biokhim Mikrobiol; 2004; 40(5):536-43. PubMed ID: 15553785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing production and purity of 9-OH-AD from phytosterols by balancing metabolic flux of the side-chain degradation and 9-position hydroxylation in Mycobacterium neoaurum.
    Zhu X; Wang X; Zhang J; Wang X
    Biotechnol J; 2024 Jan; 19(1):e2300439. PubMed ID: 38129322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sterol side-chain cleavage with immobilized Mycobacterium cells in water-immiscible organic solvents.
    Dias AC; Cabral JM; Pinheiro HM
    Enzyme Microb Technol; 1994 Aug; 16(8):708-14. PubMed ID: 7765079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complete genome sequence of 'Mycobacterium neoaurum' NRRL B-3805, an androstenedione (AD) producer for industrial biotransformation of sterols.
    Rodríguez-García A; Fernández-Alegre E; Morales A; Sola-Landa A; Lorraine J; Macdonald S; Dovbnya D; Smith MC; Donova M; Barreiro C
    J Biotechnol; 2016 Apr; 224():64-5. PubMed ID: 26988397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of steroids by microorganisms. XVIII. The reversibility of steroid-1-dehydrogenation during microbial side chain degradation of sterols by Nocardia.
    Komel R; Groh H; Hörhold C
    Z Allg Mikrobiol; 1980; 20(10):637-40. PubMed ID: 6784354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient Bioconversion of High Concentration Phytosterol Microdispersion to 4-Androstene-3,17-Dione (AD) by Mycobacterium sp. B3805.
    Mancilla RA; Little C; Amoroso A
    Appl Biochem Biotechnol; 2018 Jun; 185(2):494-506. PubMed ID: 29196932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Different Carbon Sources on Growth, Membrane Permeability, β-Sitosterol Consumption, Androstadienedione and Androstenedione Production by Mycobacterium neoaurum.
    Yin Y
    Interdiscip Sci; 2016 Mar; 8(1):102-7. PubMed ID: 26298579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Mutation breeding of high 9α-hydroxy-androst-4-ene-3,17- dione transforming strains from phytosterols and their conversion process optimization].
    Ma Y; Wang X; Wang M; Li H; Shi J; Xu Z
    Sheng Wu Gong Cheng Xue Bao; 2017 Jul; 33(7):1198-1206. PubMed ID: 28869739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of temperature on nucleus degradation of 4-androstene-3, 17-dione in phytosterol biotransformation by Mycobacterium sp.
    Xu XW; Gao XQ; Feng JX; Wang XD; Wei DZ
    Lett Appl Microbiol; 2015 Jul; 61(1):63-8. PubMed ID: 25868395
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of newly synthesized detergents in the side chain degradation of plant sterols by Mycobacterium fortuitum.
    Atrat PG; Koch B; Szekalla B; Hörhold-Schubert C
    J Basic Microbiol; 1992; 32(3):147-57. PubMed ID: 1512705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for two steroid 1,2-dehydrogenase activities in Mycobacterium fortuitum.
    Wovcha MG; Brooks KE; Kominek LA
    Biochim Biophys Acta; 1979 Sep; 574(3):471-9. PubMed ID: 486522
    [No Abstract]   [Full Text] [Related]  

  • 40. Overexpression of cytochrome p450 125 in Mycobacterium: a rational strategy in the promotion of phytosterol biotransformation.
    Su L; Shen Y; Xia M; Shang Z; Xu S; An X; Wang M
    J Ind Microbiol Biotechnol; 2018 Oct; 45(10):857-867. PubMed ID: 30073539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.