These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 15277578)
1. Regulation of K+ flow by a ring of negative charges in the outer pore of BKCa channels. Part I: Aspartate 292 modulates K+ conduction by external surface charge effect. Haug T; Sigg D; Ciani S; Toro L; Stefani E; Olcese R J Gen Physiol; 2004 Aug; 124(2):173-84. PubMed ID: 15277578 [TBL] [Abstract][Full Text] [Related]
2. Regulation of K+ flow by a ring of negative charges in the outer pore of BKCa channels. Part II: Neutralization of aspartate 292 reduces long channel openings and gating current slow component. Haug T; Olcese R; Toro L; Stefani E J Gen Physiol; 2004 Aug; 124(2):185-97. PubMed ID: 15277579 [TBL] [Abstract][Full Text] [Related]
3. Intrinsic electrostatic potential in the BK channel pore: role in determining single channel conductance and block. Carvacho I; Gonzalez W; Torres YP; Brauchi S; Alvarez O; Gonzalez-Nilo FD; Latorre R J Gen Physiol; 2008 Feb; 131(2):147-61. PubMed ID: 18227273 [TBL] [Abstract][Full Text] [Related]
4. Coupling between charge movement and pore opening in voltage dependent potassium channels. Stefani E Medicina (B Aires); 1995; 55(5 Pt 2):591-9. PubMed ID: 8842189 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2. Jäger H; Grissmer S Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028 [TBL] [Abstract][Full Text] [Related]
6. Pore dimensions and the role of occupancy in unitary conductance of Shaker K channels. Díaz-Franulic I; Sepúlveda RV; Navarro-Quezada N; González-Nilo F; Naranjo D J Gen Physiol; 2015 Aug; 146(2):133-46. PubMed ID: 26216859 [TBL] [Abstract][Full Text] [Related]
7. Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane beta-subunit homolog. Wallner M; Meera P; Toro L Proc Natl Acad Sci U S A; 1999 Mar; 96(7):4137-42. PubMed ID: 10097176 [TBL] [Abstract][Full Text] [Related]
8. Functional role of a conserved aspartate in the external mouth of voltage-gated potassium channels. Kirsch GE; Pascual JM; Shieh CC Biophys J; 1995 May; 68(5):1804-13. PubMed ID: 7612822 [TBL] [Abstract][Full Text] [Related]
9. Localization of the K+ lock-In and the Ba2+ binding sites in a voltage-gated calcium-modulated channel. Implications for survival of K+ permeability. Vergara C; Alvarez O; Latorre R J Gen Physiol; 1999 Sep; 114(3):365-76. PubMed ID: 10469727 [TBL] [Abstract][Full Text] [Related]
10. Quantum mechanical calculations of charge effects on gating the KcsA channel. Kariev AM; Znamenskiy VS; Green ME Biochim Biophys Acta; 2007 May; 1768(5):1218-29. PubMed ID: 17336921 [TBL] [Abstract][Full Text] [Related]
11. Influence of pore residues on permeation properties in the Kv2.1 potassium channel. Evidence for a selective functional interaction of K+ with the outer vestibule. Consiglio JF; Andalib P; Korn SJ J Gen Physiol; 2003 Feb; 121(2):111-24. PubMed ID: 12566539 [TBL] [Abstract][Full Text] [Related]
12. Voltage-controlled gating in a large conductance Ca2+-sensitive K+channel (hslo). Stefani E; Ottolia M; Noceti F; Olcese R; Wallner M; Latorre R; Toro L Proc Natl Acad Sci U S A; 1997 May; 94(10):5427-31. PubMed ID: 9144254 [TBL] [Abstract][Full Text] [Related]
13. The K+ channel signature sequence of murine Kir2.1: mutations that affect microscopic gating but not ionic selectivity. So I; Ashmole I; Davies NW; Sutcliffe MJ; Stanfield PR J Physiol; 2001 Feb; 531(Pt 1):37-50. PubMed ID: 11179390 [TBL] [Abstract][Full Text] [Related]
14. Sodium permeability and sensitivity induced by mutations in the selectivity filter of the KcsA channel towards Kir channels. Raja M; Vales E Biochimie; 2010 Mar; 92(3):232-44. PubMed ID: 19962419 [TBL] [Abstract][Full Text] [Related]
15. Molecular determinants of external barium block in Shaker potassium channels. Hurst RS; Toro L; Stefani E FEBS Lett; 1996 Jun; 388(1):59-65. PubMed ID: 8654591 [TBL] [Abstract][Full Text] [Related]
16. Mutations in the P-region of a mammalian potassium channel (RCK1): a comparison with the Shaker potassium channel. Tytgat J Biochem Biophys Res Commun; 1994 Aug; 203(1):513-8. PubMed ID: 8074696 [TBL] [Abstract][Full Text] [Related]
17. GYGD pore motifs in neighbouring potassium channel subunits interact to determine ion selectivity. Chapman ML; Krovetz HS; VanDongen AM J Physiol; 2001 Jan; 530(Pt 1):21-33. PubMed ID: 11136855 [TBL] [Abstract][Full Text] [Related]
18. In the yeast potassium channel, Tok1p, the external ring of aspartate residues modulates both gating and conductance. Roller A; Natura G; Bihler H; Slayman CL; Eing C; Bertl A Pflugers Arch; 2005 Nov; 451(2):362-70. PubMed ID: 16133265 [TBL] [Abstract][Full Text] [Related]
19. Constitutive activation of the Shaker Kv channel. Sukhareva M; Hackos DH; Swartz KJ J Gen Physiol; 2003 Nov; 122(5):541-56. PubMed ID: 14557403 [TBL] [Abstract][Full Text] [Related]
20. Outer pore residues control the H(+) and K(+) sensitivity of the Arabidopsis potassium channel AKT3. Geiger D; Becker D; Lacombe B; Hedrich R Plant Cell; 2002 Aug; 14(8):1859-68. PubMed ID: 12172027 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]