These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 15278451)

  • 1. Neurogenesis in the chilopod Lithobius forficatus suggests more similarities to chelicerates than to insects.
    Kadner D; Stollewerk A
    Dev Genes Evol; 2004 Aug; 214(8):367-79. PubMed ID: 15278451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of neurogenesis in the myriapod Glomeris marginata (Diplopoda) suggests more similarities to chelicerates than to insects.
    Dove H; Stollewerk A
    Development; 2003 May; 130(10):2161-71. PubMed ID: 12668630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The expression pattern of genes involved in early neurogenesis suggests distinct and conserved functions in the diplopod Glomeris marginata.
    Pioro HL; Stollewerk A
    Dev Genes Evol; 2006; 216(7-8):417-30. PubMed ID: 16724224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression patterns of neural genes in Euperipatoides kanangrensis suggest divergent evolution of onychophoran and euarthropod neurogenesis.
    Eriksson BJ; Stollewerk A
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22576-81. PubMed ID: 21149708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurogenesis in the water flea Daphnia magna (Crustacea, Branchiopoda) suggests different mechanisms of neuroblast formation in insects and crustaceans.
    Ungerer P; Eriksson BJ; Stollewerk A
    Dev Biol; 2011 Sep; 357(1):42-52. PubMed ID: 21624360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The morphological and molecular processes of onychophoran brain development show unique features that are neither comparable to insects nor to chelicerates.
    Eriksson BJ; Stollewerk A
    Arthropod Struct Dev; 2010 Nov; 39(6):478-90. PubMed ID: 20696271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurogenesis in myriapods and chelicerates and its importance for understanding arthropod relationships.
    Stollewerk A; Chipman AD
    Integr Comp Biol; 2006 Apr; 46(2):195-206. PubMed ID: 21672734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recruitment of cell groups through Delta/Notch signalling during spider neurogenesis.
    Stollewerk A
    Development; 2002 Dec; 129(23):5339-48. PubMed ID: 12403706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-minded and the evolution of the ventral midline in arthropods.
    Linne V; Eriksson BJ; Stollewerk A
    Dev Biol; 2012 Apr; 364(1):66-76. PubMed ID: 22306923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurogenesis in the spider: new insights from comparative analysis of morphological processes and gene expression patterns.
    Stollewerk A; Tautz D; Weller M
    Arthropod Struct Dev; 2003 Aug; 32(1):5-16. PubMed ID: 18088993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression suggests decoupled dorsal and ventral segmentation in the millipede Glomeris marginata (Myriapoda: Diplopoda).
    Janssen R; Prpic NM; Damen WG
    Dev Biol; 2004 Apr; 268(1):89-104. PubMed ID: 15031107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specification of neural precursor identity in the geophilomorph centipede Strigamia maritima.
    Chipman AD; Stollewerk A
    Dev Biol; 2006 Feb; 290(2):337-50. PubMed ID: 16380110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 'ventral organs' of Pycnogonida (Arthropoda) are neurogenic niches of late embryonic and post-embryonic nervous system development.
    Brenneis G; Scholtz G
    PLoS One; 2014; 9(4):e95435. PubMed ID: 24736377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic position of Myriapoda revealed by 454 transcriptome sequencing.
    Rehm P; Meusemann K; Borner J; Misof B; Burmester T
    Mol Phylogenet Evol; 2014 Aug; 77():25-33. PubMed ID: 24732681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pax3/7 genes reveal conservation and divergence in the arthropod segmentation hierarchy.
    Davis GK; D'Alessio JA; Patel NH
    Dev Biol; 2005 Sep; 285(1):169-84. PubMed ID: 16083872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, diversity and evolution of myriapod hemocyanins.
    Pick C; Scherbaum S; Hegedüs E; Meyer A; Saur M; Neumann R; Markl J; Burmester T
    FEBS J; 2014 Apr; 281(7):1818-33. PubMed ID: 24520955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hox genes and the phylogeny of the arthropods.
    Cook CE; Smith ML; Telford MJ; Bastianello A; Akam M
    Curr Biol; 2001 May; 11(10):759-63. PubMed ID: 11378385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segment polarity gene expression in a myriapod reveals conserved and diverged aspects of early head patterning in arthropods.
    Janssen R
    Dev Genes Evol; 2012 Sep; 222(5):299-309. PubMed ID: 22903234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial protein phylogeny joins myriapods with chelicerates.
    Hwang UW; Friedrich M; Tautz D; Park CJ; Kim W
    Nature; 2001 Sep; 413(6852):154-7. PubMed ID: 11557978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chelicerate Hox genes and the homology of arthropod segments.
    Abzhanov A; Popadic A; Kaufman TC
    Evol Dev; 1999; 1(2):77-89. PubMed ID: 11324031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.