BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 15278768)

  • 1. Temperature-dependent structural changes in xylanase II from Trichoderma longibrachiatum.
    Nam KH
    Carbohydr Res; 2024 Jul; 541():109173. PubMed ID: 38833820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preliminary joint X-ray and neutron protein crystallographic studies of endoxylanase II from the fungus Trichoderma longibrachiatum.
    Kovalevsky AY; Hanson BL; Seaver S; Fisher SZ; Mustyakimov M; Langan P
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Feb; 67(Pt 2):283-6. PubMed ID: 21301107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic investigation of protein phase behavior with a microfluidic formulator.
    Hansen CL; Sommer MO; Quake SR
    Proc Natl Acad Sci U S A; 2004 Oct; 101(40):14431-6. PubMed ID: 15452343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three Molecular Modification Strategies to Improve the Thermostability of Xylanase XynA from
    Zhu W; Qin L; Xu Y; Lu H; Wu Q; Li W; Zhang C; Li X
    Foods; 2023 Feb; 12(4):. PubMed ID: 36832954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effect of lignin on the hydrolysis of xylan by thermophilic and thermolabile GH11 xylanases.
    Kellock M; Rahikainen J; Borisova AS; Voutilainen S; Koivula A; Kruus K; Marjamaa K
    Biotechnol Biofuels Bioprod; 2022 May; 15(1):49. PubMed ID: 35568899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DSDBASE 2.0: updated version of DiSulphide dataBASE, a database on disulphide bonds in proteins.
    Kalmankar NV; Pavalam M; Indrakumar S; Srinivasan N; Sowdhamini R
    Database (Oxford); 2022 Mar; 2022():. PubMed ID: 35230424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extremophilic Prokaryotic Endoxylanases: Diversity, Applicability, and Molecular Insights.
    Verma D
    Front Microbiol; 2021; 12():728475. PubMed ID: 34566933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperthermostable Thermotoga maritima xylanase XYN10B shows high activity at high temperatures in the presence of biomass-dissolving hydrophilic ionic liquids.
    Yu T; Anbarasan S; Wang Y; Telli K; Aslan AS; Su Z; Zhou Y; Zhang L; Iivonen P; Havukainen S; Mentunen T; Hummel M; Sixta H; Binay B; Turunen O; Xiong H
    Extremophiles; 2016 Jul; 20(4):515-24. PubMed ID: 27240671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives.
    Kumar V; Marín-Navarro J; Shukla P
    World J Microbiol Biotechnol; 2016 Feb; 32(2):34. PubMed ID: 26754672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Temperature on Xylanase II from Trichoderma reesei QM 9414: A Calorimetric, Catalytic, and Conformational Study.
    López G; Estrada P
    Enzyme Res; 2014; 2014():708676. PubMed ID: 25276420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal behaviour and tolerance to ionic liquid [emim]OAc in GH10 xylanase from Thermoascus aurantiacus SL16W.
    Chawachart N; Anbarasan S; Turunen S; Li H; Khanongnuch C; Hummel M; Sixta H; Granström T; Lumyong S; Turunen O
    Extremophiles; 2014 Nov; 18(6):1023-34. PubMed ID: 25074836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-structured amino-acid impact on GH11 differs from GH10 xylanase.
    Liu L; Sun X; Yan P; Wang L; Chen H
    PLoS One; 2012; 7(9):e45762. PubMed ID: 23029229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introduction of a disulfide bridge enhances the thermostability of a Streptomyces olivaceoviridis xylanase mutant.
    Yang HM; Yao B; Meng K; Wang YR; Bai YG; Wu NF
    J Ind Microbiol Biotechnol; 2007 Mar; 34(3):213-8. PubMed ID: 17139507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of proteolytic bacteria from the Aleutian deep-sea and their proteases.
    Xiong H; Song L; Xu Y; Tsoi MY; Dobretsov S; Qian PY
    J Ind Microbiol Biotechnol; 2007 Jan; 34(1):63-71. PubMed ID: 16932887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the thermostability of Trichoderma reesei endo-1,4-beta-xylanase II by combination of disulphide bridges.
    Xiong H; Fenel F; Leisola M; Turunen O
    Extremophiles; 2004 Oct; 8(5):393-400. PubMed ID: 15278768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combination of weakly stabilizing mutations with a disulfide bridge in the alpha-helix region of Trichoderma reesei endo-1,4-beta-xylanase II increases the thermal stability through synergism.
    Turunen O; Etuaho K; Fenel F; Vehmaanperä J; Wu X; Rouvinen J; Leisola M
    J Biotechnol; 2001 Jun; 88(1):37-46. PubMed ID: 11377763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-beta-xylanase II.
    Fenel F; Leisola M; Jänis J; Turunen O
    J Biotechnol; 2004 Mar; 108(2):137-43. PubMed ID: 15129722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Enhancing stability of Trichoderma reesei xylanase (XYN II) by site-directed mutagenesis].
    Han C; Yu S; Ouyang J; Li X; Zhou J; Xu Y
    Sheng Wu Gong Cheng Xue Bao; 2010 May; 26(5):623-9. PubMed ID: 20684306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Progress in the thermophilic and alkalophilic xylanases].
    Bai W; Wang Q; Ma Y
    Sheng Wu Gong Cheng Xue Bao; 2014 Jun; 30(6):828-37. PubMed ID: 25212001
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.