These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 15279938)
1. Identification and quantification of arsC genes in environmental samples by using real-time PCR. Sun Y; Polishchuk EA; Radoja U; Cullen WR J Microbiol Methods; 2004 Sep; 58(3):335-49. PubMed ID: 15279938 [TBL] [Abstract][Full Text] [Related]
2. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Dhankher OP; Li Y; Rosen BP; Shi J; Salt D; Senecoff JF; Sashti NA; Meagher RB Nat Biotechnol; 2002 Nov; 20(11):1140-5. PubMed ID: 12368812 [TBL] [Abstract][Full Text] [Related]
3. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Ordóñez E; Letek M; Valbuena N; Gil JA; Mateos LM Appl Environ Microbiol; 2005 Oct; 71(10):6206-15. PubMed ID: 16204540 [TBL] [Abstract][Full Text] [Related]
4. arrA is a reliable marker for As(V) respiration. Malasarn D; Saltikov CW; Campbell KM; Santini JM; Hering JG; Newman DK Science; 2004 Oct; 306(5695):455. PubMed ID: 15486292 [TBL] [Abstract][Full Text] [Related]
5. Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Crameri A; Dawes G; Rodriguez E; Silver S; Stemmer WP Nat Biotechnol; 1997 May; 15(5):436-8. PubMed ID: 9131621 [TBL] [Abstract][Full Text] [Related]
6. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. López-Gutiérrez JC; Henry S; Hallet S; Martin-Laurent F; Catroux G; Philippot L J Microbiol Methods; 2004 Jun; 57(3):399-407. PubMed ID: 15134887 [TBL] [Abstract][Full Text] [Related]
7. Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase. Jackson CR; Dugas SL BMC Evol Biol; 2003 Jul; 3():18. PubMed ID: 12877744 [TBL] [Abstract][Full Text] [Related]
8. Kinetics and active site dynamics of Staphylococcus aureus arsenate reductase. Messens J; Martins JC; Brosens E; Van Belle K; Jacobs DM; Willem R; Wyns L J Biol Inorg Chem; 2002 Jan; 7(1-2):146-56. PubMed ID: 11862551 [TBL] [Abstract][Full Text] [Related]
9. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers. Tuomi PM; Salminen JM; Jørgensen KS FEMS Microbiol Ecol; 2004 Dec; 51(1):99-107. PubMed ID: 16329859 [TBL] [Abstract][Full Text] [Related]
10. Detection and quantification of phnE gene from oil-contaminated soil samples by competitive quantitative PCR. Lui P; Zhang CK Microbiol Res; 2007; 162(4):335-40. PubMed ID: 16563713 [TBL] [Abstract][Full Text] [Related]
11. Functional analysis of a chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3. Prithivirajsingh S; Mishra SK; Mahadevan A Mol Biol Rep; 2001; 28(2):63-72. PubMed ID: 11931390 [TBL] [Abstract][Full Text] [Related]
12. Structure and diversity of arsenic resistant bacteria in an old tin mine area of Thailand. Jareonmit P; Sajjaphan K; Sadowsky MJ J Microbiol Biotechnol; 2010 Jan; 20(1):169-78. PubMed ID: 20134249 [TBL] [Abstract][Full Text] [Related]
13. Pumping out the arsenic. Doucleff M; Terry N Nat Biotechnol; 2002 Nov; 20(11):1094-5. PubMed ID: 12410252 [No Abstract] [Full Text] [Related]
14. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. Hendrickx B; Junca H; Vosahlova J; Lindner A; Rüegg I; Bucheli-Witschel M; Faber F; Egli T; Mau M; Schlömann M; Brennerova M; Brenner V; Pieper DH; Top EM; Dejonghe W; Bastiaens L; Springael D J Microbiol Methods; 2006 Feb; 64(2):250-65. PubMed ID: 15949858 [TBL] [Abstract][Full Text] [Related]
15. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. Henry S; Baudoin E; López-Gutiérrez JC; Martin-Laurent F; Brauman A; Philippot L J Microbiol Methods; 2004 Dec; 59(3):327-35. PubMed ID: 15488276 [TBL] [Abstract][Full Text] [Related]
16. [Bacterial resistance to arsenic compounds]. Cervantes C Rev Latinoam Microbiol; 1995; 37(4):387-95. PubMed ID: 8900573 [TBL] [Abstract][Full Text] [Related]
17. Quantification of bacterial RubisCO genes in soils by cbbL targeted real-time PCR. Selesi D; Pattis I; Schmid M; Kandeler E; Hartmann A J Microbiol Methods; 2007 Jun; 69(3):497-503. PubMed ID: 17462765 [TBL] [Abstract][Full Text] [Related]
18. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490 [TBL] [Abstract][Full Text] [Related]
19. Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Singleton DR; Sangaiah R; Gold A; Ball LM; Aitken MD Environ Microbiol; 2006 Oct; 8(10):1736-45. PubMed ID: 16958754 [TBL] [Abstract][Full Text] [Related]
20. Arginine 60 in the ArsC arsenate reductase of E. coli plasmid R773 determines the chemical nature of the bound As(III) product. DeMel S; Shi J; Martin P; Rosen BP; Edwards BF Protein Sci; 2004 Sep; 13(9):2330-40. PubMed ID: 15295115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]