BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 15279942)

  • 1. Quantitative and qualitative comparison of density-based purification methods for detection of Cryptosporidium oocysts in turbid environmental matrices.
    Chesnot T; Schwartzbrod J
    J Microbiol Methods; 2004 Sep; 58(3):375-86. PubMed ID: 15279942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative and qualitative comparisons of Cryptosporidium faecal purification procedures for the isolation of oocysts suitable for proteomic analysis.
    Truong Q; Ferrari BC
    Int J Parasitol; 2006 Jun; 36(7):811-9. PubMed ID: 16696982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Cryptosporidium parvum oocyst recovery efficiencies from various filtration cartridges by electrochemiluminescence assays.
    Lee Y; Gomez LL; McAuliffe IT; Tsang VC
    Lett Appl Microbiol; 2004; 39(2):156-62. PubMed ID: 15242454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery and detection of Cryptosporidium parvum oocysts from water samples using continuous flow centrifugation.
    Higgins JA; Trout JM; Fayer R; Shelton D; Jenkins MC
    Water Res; 2003 Sep; 37(15):3551-60. PubMed ID: 12867321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of recoveries for the determination of protozoa Cryptosporidium and Giardia in water using method 1623.
    Hu J; Feng Y; Ong SL; Ng WJ; Song L; Tan X; Chu X
    J Microbiol Methods; 2004 Sep; 58(3):321-5. PubMed ID: 15279936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of the solar water disinfection method in turbid waters experimentally contaminated with Cryptosporidium parvum oocysts under real field conditions.
    Gómez-Couso H; Fontán-Saínz M; Sichel C; Fernández-Ibáñez P; Ares-Mazás E
    Trop Med Int Health; 2009 Jun; 14(6):620-7. PubMed ID: 19570059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for the recovery, isolation and detection of Cryptosporidium oocysts in wastewaters.
    McCuin RM; Clancy JL
    J Microbiol Methods; 2005 Oct; 63(1):73-88. PubMed ID: 15893393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Cryptosporidium parvum in secondary effluents using a most probable number-polymerase chain reaction assay.
    Tsuchihashi R; Loge FJ; Darby JL
    Water Environ Res; 2003; 75(4):292-9. PubMed ID: 12934822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and discrimination of Cryptosporidium parvum and C. hominis in water samples by immunomagnetic separation-PCR.
    Ochiai Y; Takada C; Hosaka M
    Appl Environ Microbiol; 2005 Feb; 71(2):898-903. PubMed ID: 15691946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of methods for improved detection of Cryptosporidium spp. in mussels (Mytilus californianus).
    Miller WA; Gardner IA; Atwill ER; Leutenegger CM; Miller MA; Hedrick RP; Melli AC; Barnes NM; Conrad PA
    J Microbiol Methods; 2006 Jun; 65(3):367-79. PubMed ID: 16181691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of procedures for direct extraction of Cryptosporidium DNA from water concentrates and for relief of PCR inhibitors.
    Jiang J; Alderisio KA; Singh A; Xiao L
    Appl Environ Microbiol; 2005 Mar; 71(3):1135-41. PubMed ID: 15746310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative comparison of different purification and detection methods for Cryptosporidium parvum oocysts.
    Kar S; Gawlowska S; Daugschies A; Bangoura B
    Vet Parasitol; 2011 May; 177(3-4):366-70. PubMed ID: 21242035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performances of the immunomagnetic separation method for Cryptosporidium in water under various operation conditions.
    Hsu BM; Huang C
    Biotechnol Prog; 2001; 17(6):1114-8. PubMed ID: 11735449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on methods for isolation and purification of Cryptosporidium parvum oocysts from mouse feces].
    Chen F; Huang KH
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2006 Jun; 24(3):219-22. PubMed ID: 17094628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Improvement of amplification method for Cryptosporidium parvum oocysts from mice].
    Huang KH; Yang SG; Tang JX
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2001; 19(6):360-2. PubMed ID: 12572074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of most probable number-PCR and most probable number-foci detection method for quantifying infectious Cryptosporidium parvum oocysts in environmental samples.
    Carey CM; Lee H; Trevors JT
    J Microbiol Methods; 2006 Nov; 67(2):363-72. PubMed ID: 16730821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An immunomagnetic separation-real-time PCR method for quantification of Cryptosporidium parvum in water samples.
    Fontaine M; Guillot E
    J Microbiol Methods; 2003 Jul; 54(1):29-36. PubMed ID: 12732419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New method using sedimentation and immunomagnetic separation for isolation and enumeration of Cryptosporidium parvum oocysts and Giardia lamblia cysts.
    Massanet-Nicolau J
    Appl Environ Microbiol; 2003 Nov; 69(11):6758-61. PubMed ID: 14602637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of Cryptosporidium parvum with suspended particles: impact on oocyst sedimentation.
    Searcy KE; Packman AI; Atwill ER; Harter T
    Appl Environ Microbiol; 2005 Feb; 71(2):1072-8. PubMed ID: 15691968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence of Cryptosporidium spp. oocysts in raw and treated sewage and river water in north-eastern Spain.
    Montemayor M; Valero F; Jofre J; Lucena F
    J Appl Microbiol; 2005; 99(6):1455-62. PubMed ID: 16313418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.