BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 15280139)

  • 21. Feasibility of weaning and direct extubation from open lung high-frequency ventilation in preterm infants.
    van Velzen A; De Jaegere A; van der Lee J; van Kaam A
    Pediatr Crit Care Med; 2009 Jan; 10(1):71-5. PubMed ID: 19057441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spontaneous breathing trial predicts successful extubation in infants and children.
    Chavez A; dela Cruz R; Zaritsky A
    Pediatr Crit Care Med; 2006 Jul; 7(4):324-8. PubMed ID: 16738500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-frequency jet ventilation improves gas exchange in extremely immature infants with evolving chronic lung disease.
    Plavka R; Dokoupilová M; Pazderová L; Kopecký P; Sebron V; Zapadlo M; Keszler M
    Am J Perinatol; 2006 Nov; 23(8):467-72. PubMed ID: 17094040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laboratory evaluation of the Vortran Automatic Resuscitator Model RTM.
    Babic MD; Chatburn RL; Stoller JK
    Respir Care; 2007 Dec; 52(12):1718-27. PubMed ID: 18028562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect on respiratory function of pressure support ventilation versus synchronised intermittent mandatory ventilation in preterm infants.
    Migliori C; Cavazza A; Motta M; Chirico G
    Pediatr Pulmonol; 2003 May; 35(5):364-7. PubMed ID: 12687593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of instrumental dead space reduction during weaning from synchronized ventilation in preterm infants.
    Estay A; Claure N; D'Ugard C; Organero R; Bancalari E
    J Perinatol; 2010 Jul; 30(7):479-83. PubMed ID: 20010615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predictors of extubation success and failure in mechanically ventilated infants and children.
    Khan N; Brown A; Venkataraman ST
    Crit Care Med; 1996 Sep; 24(9):1568-79. PubMed ID: 8797633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elimination of ventilator dead space during synchronized ventilation in premature infants.
    Claure N; D'Ugard C; Bancalari E
    J Pediatr; 2003 Sep; 143(3):315-20. PubMed ID: 14517512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tracheal gas insufflation-augmented continuous positive airway pressure in a spontaneously breathing model of neonatal respiratory distress.
    Miller TL; Blackson TJ; Shaffer TH; Touch SM
    Pediatr Pulmonol; 2004 Nov; 38(5):386-95. PubMed ID: 15390348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Airway obstruction during mask ventilation of very low birth weight infants during neonatal resuscitation.
    Finer NN; Rich W; Wang C; Leone T
    Pediatrics; 2009 Mar; 123(3):865-9. PubMed ID: 19255015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A randomized controlled trial of post-extubation bubble continuous positive airway pressure versus Infant Flow Driver continuous positive airway pressure in preterm infants with respiratory distress syndrome.
    Gupta S; Sinha SK; Tin W; Donn SM
    J Pediatr; 2009 May; 154(5):645-50. PubMed ID: 19230906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Positive effects of early continuous positive airway pressure on pulmonary function in extremely premature infants: results of a subgroup analysis of the COIN trial.
    Roehr CC; Proquitté H; Hammer H; Wauer RR; Morley CJ; Schmalisch G
    Arch Dis Child Fetal Neonatal Ed; 2011 Sep; 96(5):F371-3. PubMed ID: 20584798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiologic impact of closed-system endotracheal suctioning in spontaneously breathing patients receiving mechanical ventilation.
    Seymour CW; Cross BJ; Cooke CR; Gallop RL; Fuchs BD
    Respir Care; 2009 Mar; 54(3):367-74. PubMed ID: 19245731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theophylline treatment in the extubation of infants weighing less than 1,250 grams: a controlled trial.
    Durand DJ; Goodman A; Ray P; Ballard RA; Clyman RI
    Pediatrics; 1987 Nov; 80(5):684-8. PubMed ID: 3313257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [A study of cough peak expiratory flow in predicting extubation outcome].
    Gao XJ; Qin YZ
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2009 Jul; 21(7):390-3. PubMed ID: 19615127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygenation and ventilation in spontaneously breathing very preterm infants with nasopharyngeal CPAP in the delivery room.
    Lindner W; Pohlandt F
    Acta Paediatr; 2007 Jan; 96(1):17-22. PubMed ID: 17187597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing the effects of nasal synchronized intermittent positive pressure ventilation (nSIPPV) and nasal continuous positive airway pressure (nCPAP) after extubation in very low birth weight infants.
    Moretti C; Gizzi C; Papoff P; Lampariello S; Capoferri M; Calcagnini G; Bucci G
    Early Hum Dev; 1999 Dec; 56(2-3):167-77. PubMed ID: 10636595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A trial of spontaneous breathing to determine the readiness for extubation in very low birth weight infants: a prospective evaluation.
    Kamlin CO; Davis PG; Argus B; Mills B; Morley CJ
    Arch Dis Child Fetal Neonatal Ed; 2008 Jul; 93(4):F305-6. PubMed ID: 18192327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Randomized, controlled trial comparing synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in preterm infants.
    Reyes ZC; Claure N; Tauscher MK; D'Ugard C; Vanbuskirk S; Bancalari E
    Pediatrics; 2006 Oct; 118(4):1409-17. PubMed ID: 17015530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Optimal Predictors of Readiness for Extubation in Low Birth Weight Infants.
    Janjindamai W; Pasee S; Thatrimontrichai A
    J Med Assoc Thai; 2017 Apr; 100(4):427-34. PubMed ID: 29911842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.