These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15280161)

  • 1. Determinants of basal nitric oxide concentration in the renal medullary microcirculation.
    Zhang W; Pibulsonggram T; Edwards A
    Am J Physiol Renal Physiol; 2004 Dec; 287(6):F1189-203. PubMed ID: 15280161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of nitric oxide tubulovascular cross talk in a renal outer medullary cross section.
    Zhang W; Edwards A
    Am J Physiol Renal Physiol; 2007 Feb; 292(2):F711-22. PubMed ID: 17032934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of glucose transport and conversion to lactate in the renal medullary microcirculation.
    Zhang W; Edwards A
    Am J Physiol Renal Physiol; 2006 Jan; 290(1):F87-102. PubMed ID: 16118395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical model of nitric oxide convection and diffusion in a renal medullary vas rectum.
    Zhang W; Edwards A
    J Math Biol; 2006 Sep; 53(3):385-420. PubMed ID: 16897017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. II. Reciprocal interactions and tubulovascular cross talk.
    Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2010 Sep; 299(3):F634-47. PubMed ID: 20519375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of outer medullary NaCl transport and oxygenation by nitric oxide and superoxide.
    Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F979-96. PubMed ID: 21849492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. I. Effects of low medullary oxygen tension.
    Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2010 Sep; 299(3):F616-33. PubMed ID: 20534869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced superoxide production in renal outer medulla of Dahl salt-sensitive rats reduces nitric oxide tubular-vascular cross-talk.
    Mori T; O'Connor PM; Abe M; Cowley AW
    Hypertension; 2007 Jun; 49(6):1336-41. PubMed ID: 17470722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen transport across vasa recta in the renal medulla.
    Zhang W; Edwards A
    Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H1042-55. PubMed ID: 12181134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results.
    Chen J; Layton AT; Edwards A
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F517-36. PubMed ID: 19403646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study.
    Fry BC; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2016 Feb; 310(3):F237-47. PubMed ID: 26831340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration.
    Fry BC; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2015 May; 308(9):F967-80. PubMed ID: 25651567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical effects of UTB urea transporters in the renal medullary microcirculation.
    Zhang W; Edwards A
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F731-47. PubMed ID: 12824077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of plasma proteins across vasa recta in the renal medulla.
    Zhang W; Edwards A
    Am J Physiol Renal Physiol; 2001 Sep; 281(3):F478-92. PubMed ID: 11502597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture.
    Chen J; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F537-48. PubMed ID: 19403645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of microvascular water and solute exchanges in the renal medulla.
    Pallone TL; Morgenthaler TI; Deen WM
    Am J Physiol; 1984 Aug; 247(2 Pt 2):F303-15. PubMed ID: 6465323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of nitric oxide-mediated vasodilation on outer medullary NaCl transport and oxygenation.
    Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2012 Oct; 303(7):F907-17. PubMed ID: 22791340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular mechanisms underlying nitric oxide-induced vasodilation of descending vasa recta.
    Edwards A; Cao C; Pallone TL
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F441-56. PubMed ID: 21084408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.