BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 15280398)

  • 1. Genetic pathways to melanoma tumorigenesis.
    Hussein MR
    J Clin Pathol; 2004 Aug; 57(8):797-801. PubMed ID: 15280398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor progression in the human melanocytic system.
    Kath R; Rodeck U; Menssen HD; Mancianti ML; Linnenbach AJ; Elder DE; Herlyn M
    Anticancer Res; 1989; 9(4):865-72. PubMed ID: 2554787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allelotypes of primary cutaneous melanoma and benign melanocytic nevi.
    Healy E; Belgaid CE; Takata M; Vahlquist A; Rehman I; Rigby H; Rees JL
    Cancer Res; 1996 Feb; 56(3):589-93. PubMed ID: 8564976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X inactivation, DNA deletion, and microsatellite instability in common acquired melanocytic nevi.
    Indsto JO; Cachia AR; Kefford RF; Mann GJ
    Clin Cancer Res; 2001 Dec; 7(12):4054-9. PubMed ID: 11751501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of microgenomic technology for analysis of alterations in DNA copy number and gene expression in malignant melanoma.
    Trent JM; Bittner M; Zhang J; Wiltshire R; Ray M; Su Y; Gracia E; Meltzer P; De Risi J; Penland L; Brown P
    Clin Exp Immunol; 1997 Jan; 107 Suppl 1():33-40. PubMed ID: 9020934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel genes associated with malignant melanoma but not benign melanocytic lesions.
    Talantov D; Mazumder A; Yu JX; Briggs T; Jiang Y; Backus J; Atkins D; Wang Y
    Clin Cancer Res; 2005 Oct; 11(20):7234-42. PubMed ID: 16243793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular alterations at chromosome 9p21 in melanocytic naevi and melanoma.
    Sini MC; Manca A; Cossu A; Budroni M; Botti G; Ascierto PA; Cremona F; Muggiano A; D'Atri S; Casula M; Baldinu P; Palomba G; Lissia A; Tanda F; Palmieri G
    Br J Dermatol; 2008 Feb; 158(2):243-50. PubMed ID: 18028495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A defined region of loss of heterozygosity at 11q23 in cutaneous malignant melanoma.
    Herbst RA; Larson A; Weiss J; Cavenee WK; Hampton GM; Arden KC
    Cancer Res; 1995 Jun; 55(12):2494-6. PubMed ID: 7780954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concordant loss of heterozygosity of DNA repair gene, hOGG1, in melanoma in situ and atypical melanocytic hyperplasia.
    Pashaei S; Li L; Zhang H; Spencer HJ; Schichman SA; Fan CY; Smoller BR
    J Cutan Pathol; 2008 Jun; 35(6):525-31. PubMed ID: 18312439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of losses of heterozygosity of the candidate tumour suppressor gene DMBT1 in melanoma resection specimens.
    Deichmann M; Mollenhauer J; Helmke B; Thome M; Hartschuh W; Poustka A; Näher H
    Oncology; 2002; 63(2):166-72. PubMed ID: 12239452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic transdifferentiation of normal melanocytes by a metastatic melanoma microenvironment.
    Seftor EA; Brown KM; Chin L; Kirschmann DA; Wheaton WW; Protopopov A; Feng B; Balagurunathan Y; Trent JM; Nickoloff BJ; Seftor RE; Hendrix MJ
    Cancer Res; 2005 Nov; 65(22):10164-9. PubMed ID: 16288000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetics of melanoma.
    Fountain JW; Bale SJ; Housman DE; Dracopoli NC
    Cancer Surv; 1990; 9(4):645-71. PubMed ID: 2101727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of a t(9;12)(p21;q13) balanced chromosome translocation in combination with integrative genomics analysis identifies C9orf14 as a candidate tumor-suppressor.
    Pujana MA; Ruiz A; Badenas C; Puig-Butille JA; Nadal M; Stark M; Gómez L; Valls J; Solé X; Hernández P; Cerrato C; Madrigal I; de Cid R; Aguilar H; Capellá G; Cal S; James MR; Walker GJ; Malvehy J; Milà M; Hayward NK; Estivill X; Puig S
    Genes Chromosomes Cancer; 2007 Feb; 46(2):155-62. PubMed ID: 17099875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melanoma ex naevo: a study of the associated naevus.
    Bogdan I; Smolle J; Kerl H; Burg G; Böni R
    Melanoma Res; 2003 Apr; 13(2):213-7. PubMed ID: 12690309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression patterns of S100 proteins in melanocytes and melanocytic lesions.
    Petersson S; Shubbar E; Enerbäck L; Enerbäck C
    Melanoma Res; 2009 Aug; 19(4):215-25. PubMed ID: 19521263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High frequency of homozygosity of the HLA region in melanoma cell lines reveals a pattern compatible with extensive loss of heterozygosity.
    Rodriguez T; Méndez R; Roberts CH; Ruiz-Cabello F; Dodi IA; López Nevot MA; Paco L; Maleno I; Marsh SG; Pawelec G; Garrido F
    Cancer Immunol Immunother; 2005 Feb; 54(2):141-8. PubMed ID: 15592718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PUMA expression is significantly reduced in human cutaneous melanomas.
    Karst AM; Dai DL; Martinka M; Li G
    Oncogene; 2005 Feb; 24(6):1111-6. PubMed ID: 15690057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Genetic alterations in the differential diagnosis of melanocytic diseases].
    Sanz Esponera J
    An R Acad Nac Med (Madr); 2000; 117(4):815-24. PubMed ID: 11382155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular aspects of melanocytic dysplastic nevi.
    Hussein MR; Wood GS
    J Mol Diagn; 2002 May; 4(2):71-80. PubMed ID: 11986397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular pathogenesis of cutaneous melanocytic neoplasms.
    Ibrahim N; Haluska FG
    Annu Rev Pathol; 2009; 4():551-79. PubMed ID: 19400696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.