These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 15280456)

  • 81. Inhibition of the precursor and mature forms of HIV-1 protease as a tool for drug evaluation.
    Humpolíčková J; Weber J; Starková J; Mašínová E; Günterová J; Flaisigová I; Konvalinka J; Majerová T
    Sci Rep; 2018 Jul; 8(1):10438. PubMed ID: 29992979
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Autoprocessing of human immunodeficiency virus type 1 protease miniprecursor fusions in mammalian cells.
    Huang L; Chen C
    AIDS Res Ther; 2010 Jul; 7():27. PubMed ID: 20667109
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The HIV-1 Viral Protease Is Activated during Assembly and Budding Prior to Particle Release.
    Tabler CO; Wegman SJ; Chen J; Shroff H; Alhusaini N; Tilton JC
    J Virol; 2022 May; 96(9):e0219821. PubMed ID: 35438536
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Folding regulates autoprocessing of HIV-1 protease precursor.
    Chatterjee A; Mridula P; Mishra RK; Mittal R; Hosur RV
    J Biol Chem; 2005 Mar; 280(12):11369-78. PubMed ID: 15632156
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Cell-based fluorescence assay for human immunodeficiency virus type 1 protease activity.
    Lindsten K; Uhlíková T; Konvalinka J; Masucci MG; Dantuma NP
    Antimicrob Agents Chemother; 2001 Sep; 45(9):2616-22. PubMed ID: 11502538
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Association of human mitochondrial lysyl-tRNA synthetase with HIV-1 GagPol does not require other viral proteins.
    Kobbi L; Dias J; Comisso M; Mirande M
    Biochim Open; 2016 Jun; 2():52-61. PubMed ID: 29632838
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Strategies to inhibit viral polyprotein cleavages.
    Korant BD
    Ann N Y Acad Sci; 1990; 616():252-7. PubMed ID: 2078022
    [No Abstract]   [Full Text] [Related]  

  • 88. Modeling and Analysis of HIV-1 Pol Polyprotein as a Case Study for Predicting Large Polyprotein Structures.
    Hao M; Imamichi T; Chang W
    Int J Mol Sci; 2024 Feb; 25(3):. PubMed ID: 38339086
    [TBL] [Abstract][Full Text] [Related]  

  • 89. New Insights into HIV Life Cycle, Th1/Th2 Shift during HIV Infection and Preferential Virus Infection of Th2 Cells: Implications of Early HIV Treatment Initiation and Care.
    Hokello J; Tyagi K; Owor RO; Sharma AL; Bhushan A; Daniel R; Tyagi M
    Life (Basel); 2024 Jan; 14(1):. PubMed ID: 38255719
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Structure of the HIV immature lattice allows for essential lattice remodeling within budded virions.
    Guo S; Saha I; Saffarian S; Johnson ME
    Elife; 2023 Jul; 12():. PubMed ID: 37435945
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Temporal control by cofactors prevents kinetic trapping in retroviral Gag lattice assembly.
    Qian Y; Evans D; Mishra B; Fu Y; Liu ZH; Guo S; Johnson ME
    Biophys J; 2023 Aug; 122(15):3173-3190. PubMed ID: 37393432
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The C-Terminal Domain of RNase H and the C-Terminus Amino Acid Residue Regulate Virus Release and Autoprocessing of a Defective HIV-1 Possessing M50I and V151I Changes in Integrase.
    Imamichi T; Chen Q; Hao M; Chang W; Yang J
    Viruses; 2022 Nov; 14(12):. PubMed ID: 36560691
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Viral proteases as therapeutic targets.
    Majerová T; Konvalinka J
    Mol Aspects Med; 2022 Dec; 88():101159. PubMed ID: 36459838
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Cryo-EM structure of the HIV-1 Pol polyprotein provides insights into virion maturation.
    Harrison JJEK; Passos DO; Bruhn JF; Bauman JD; Tuberty L; DeStefano JJ; Ruiz FX; Lyumkis D; Arnold E
    Sci Adv; 2022 Jul; 8(27):eabn9874. PubMed ID: 35857464
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Sequence dependencies and biophysical features both govern cleavage of diverse cut-sites by HIV protease.
    Samant N; Nachum G; Tsepal T; Bolon DNA
    Protein Sci; 2022 Jul; 31(7):e4366. PubMed ID: 35762719
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Natural Immunity against HIV-1: Progression of Understanding after Association Studies.
    Luo M
    Viruses; 2022 Jun; 14(6):. PubMed ID: 35746714
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Amino acid substitutions at the HIV-1 transframe region significantly impair virus infectivity.
    Yu FH; Huang KJ; Wang CT
    PLoS One; 2022; 17(1):e0262477. PubMed ID: 35085286
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Detection of Gag C-terminal mutations among HIV-1 non-B subtypes in a subset of Cameroonian patients.
    Teto G; Nka AD; Fokam J; Bouba Y; Takou D; Fabeni L; Carioti L; Armenia D; Semengue ENJ; Dambaya B; Sosso SM; Colizzi V; Perno CF; Ceccherini-Silberstein F; Santoro MM; Ndjolo A
    Sci Rep; 2022 Jan; 12(1):1374. PubMed ID: 35082353
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Structural Analysis of Retrovirus Assembly and Maturation.
    Krebs AS; Mendonça LM; Zhang P
    Viruses; 2021 Dec; 14(1):. PubMed ID: 35062258
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.