BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 15280651)

  • 21. A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium chrysogenum.
    Ali H; Ries MI; Nijland JG; Lankhorst PP; Hankemeier T; Bovenberg RA; Vreeken RJ; Driessen AJ
    PLoS One; 2013; 8(6):e65328. PubMed ID: 23776469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway.
    Ries MI; Ali H; Lankhorst PP; Hankemeier T; Bovenberg RA; Driessen AJ; Vreeken RJ
    J Biol Chem; 2013 Dec; 288(52):37289-95. PubMed ID: 24225953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elaborated regulation of griseofulvin biosynthesis in Penicillium griseofulvum and its role on conidiation and virulence.
    Valente S; Cometto A; Piombo E; Meloni GR; Ballester AR; González-Candelas L; Spadaro D
    Int J Food Microbiol; 2020 Sep; 328():108687. PubMed ID: 32474227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Penicillium jejuense sp. nov., isolated from the marine environments of Jeju Island, Korea.
    Park MS; Fong JJ; Oh SY; Houbraken J; Sohn JH; Hong SB; Lim YW
    Mycologia; 2015; 107(1):209-16. PubMed ID: 25361832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Optimization of the medium and cultivation conditions of Penicillium roquefortii f39 producing the diketopiperazine alkaloid roquefortine].
    Boĭchenko DM; Zelenkova NF; Arinbasarov MU; Reshetilova TA
    Prikl Biokhim Mikrobiol; 2002; 38(3):257-60. PubMed ID: 12068576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using roquefortine C as a biomarker for penitrem A intoxication.
    Tiwary AK; Puschner B; Poppenga RH
    J Vet Diagn Invest; 2009 Mar; 21(2):237-9. PubMed ID: 19286504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Penicillium subrubescens, a new species efficiently producing inulinase.
    Mansouri S; Houbraken J; Samson RA; Frisvad JC; Christensen M; Tuthill DE; Koutaniemi S; Hatakka A; Lankinen P
    Antonie Van Leeuwenhoek; 2013 Jun; 103(6):1343-57. PubMed ID: 23559042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of intraspecific variability and abiotic factors on mycotoxin production in Penicillium roqueforti.
    Fontaine K; Hymery N; Lacroix MZ; Puel S; Puel O; Rigalma K; Gaydou V; Coton E; Mounier J
    Int J Food Microbiol; 2015 Dec; 215():187-93. PubMed ID: 26320771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and metabolism of roquefortine in Penicillium species.
    Reshetilova TA; Kozlovsky AG
    J Basic Microbiol; 1990; 30(2):109-14. PubMed ID: 2352134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum.
    Chooi YH; Cacho R; Tang Y
    Chem Biol; 2010 May; 17(5):483-94. PubMed ID: 20534346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pathway for the Biosynthesis of the Pigment Chrysogine by Penicillium chrysogenum.
    Viggiano A; Salo O; Ali H; Szymanski W; Lankhorst PP; Nygård Y; Bovenberg RAL; Driessen AJM
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29196288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Penicillium fusisporum and P. zhuangii, two new monoverticillate species with apical-swelling stipes of section Aspergilloides isolated from plant leaves in China.
    Wang B; Yu Y; Wang L
    PLoS One; 2014; 9(7):e101454. PubMed ID: 24988489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Several secondary metabolite gene clusters in the genomes of ten Penicillium spp. raise the risk of multiple mycotoxin occurrence in chestnuts.
    Garello M; Piombo E; Buonsenso F; Prencipe S; Valente S; Meloni GR; Marcet-Houben M; Gabaldón T; Spadaro D
    Food Microbiol; 2024 Sep; 122():104532. PubMed ID: 38839238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of secondary metabolite production by Penicillium crustosum strains, isolated from Arctic and other various ecological niches.
    Sonjak S; Frisvad JC; Gunde-Cimerman N
    FEMS Microbiol Ecol; 2005 Jun; 53(1):51-60. PubMed ID: 16329929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Penitrem and thomitrem formation by Penicillium crustosum.
    Rundberget T; Skaar I; O'Brien O; Flåøyen A
    Mycopathologia; 2004 Apr; 157(3):349-57. PubMed ID: 15180164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solid-state fermentation for production of griseofulvin on rice bran using Penicillium griseofulvum.
    Saykhedkar SS; Singhal RS
    Biotechnol Prog; 2004; 20(4):1280-4. PubMed ID: 15296463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Factors contributing to roquefortine yield variability during cultivation of penicillium roquefortii].
    Boĭchenko DM; Zelenkova NF; Vinokurova NG; Baskunov BP
    Prikl Biokhim Mikrobiol; 2002; 38(1):40-3. PubMed ID: 11852565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of patulin and griseofulvin by a strain of Penicillium griseofulvum in three different media.
    Torres M; Canela R; Riba M; Sanchis V
    Mycopathologia; 1987 Aug; 99(2):85-9. PubMed ID: 3657904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diversity of Penicillium section Citrina within the fynbos biome of South Africa, including a new species from a Protea repens infructescence.
    Visagie CM; Seifert KA; Houbraken J; Samson RA; Jacobs K
    Mycologia; 2014; 106(3):537-52. PubMed ID: 24871606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Several species of Penicillium isolated from chestnut flour processing are pathogenic on fresh chestnuts and produce mycotoxins.
    Prencipe S; Siciliano I; Gatti C; Garibaldi A; Gullino ML; Botta R; Spadaro D
    Food Microbiol; 2018 Dec; 76():396-404. PubMed ID: 30166166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.