BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15281084)

  • 1. Chromatin remodeling and stem cell theory of relativity.
    Cerny J; Quesenberry PJ
    J Cell Physiol; 2004 Oct; 201(1):1-16. PubMed ID: 15281084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stem cell continuum: a new model of stem cell regulation.
    Colvin GA; Quesenberry PJ; Dooner MS
    Handb Exp Pharmacol; 2006; (174):169-83. PubMed ID: 16372402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone acetylation and chromatin signature in stem cell identity and cancer.
    Shukla V; Vaissière T; Herceg Z
    Mutat Res; 2008 Jan; 637(1-2):1-15. PubMed ID: 17850830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The stem cell continuum.
    Quesenberry PJ; Colvin GA; Abedi M; Dooner G; Dooner M; Aliotta J; Keaney P; Luo L; Demers D; Peterson A; Foster B; Greer D
    Ann N Y Acad Sci; 2005 Jun; 1044():228-35. PubMed ID: 15958716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The continuum model of marrow stem cell regulation.
    Quesenberry PJ
    Curr Opin Hematol; 2006 Jul; 13(4):216-21. PubMed ID: 16755216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stem cell continuum: cell cycle, injury, and phenotype lability.
    Quesenberry PJ; Colvin G; Dooner G; Dooner M; Aliotta JM; Johnson K
    Ann N Y Acad Sci; 2007 Jun; 1106():20-9. PubMed ID: 17360803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear and chromatin reorganization in the MHC-Oct3/4 locus at developmental phases of embryonic stem cell differentiation.
    Aoto T; Saitoh N; Ichimura T; Niwa H; Nakao M
    Dev Biol; 2006 Oct; 298(2):354-67. PubMed ID: 16950240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective.
    Rajasekhar VK; Begemann M
    Stem Cells; 2007 Oct; 25(10):2498-510. PubMed ID: 17600113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaotic dynamic stabilities and instabilities of hematopoietic stem cell growth plasticity.
    Puca A; Russo G; Romano G; Giordano A
    J Cell Physiol; 2007 Dec; 213(3):672-8. PubMed ID: 17657722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic alchemy for cell fate conversion.
    Kondo T
    Curr Opin Genet Dev; 2006 Oct; 16(5):502-7. PubMed ID: 16844365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic interplay between histone modifications and DNA methylation in gene silencing.
    Vaissière T; Sawan C; Herceg Z
    Mutat Res; 2008; 659(1-2):40-8. PubMed ID: 18407786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of telomerase gene expression in alternative lengthening of telomere cells is associated with chromatin remodeling of the hTR and hTERT gene promoters.
    Atkinson SP; Hoare SF; Glasspool RM; Keith WN
    Cancer Res; 2005 Sep; 65(17):7585-90. PubMed ID: 16140922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin, epigenetics and stem cells.
    Roloff TC; Nuber UA
    Eur J Cell Biol; 2005 Mar; 84(2-3):123-35. PubMed ID: 15819395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic control of neural stem cell fate.
    Hsieh J; Gage FH
    Curr Opin Genet Dev; 2004 Oct; 14(5):461-9. PubMed ID: 15380235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay between DNA methylation, histone modification and chromatin remodeling in stem cells and during development.
    Ikegami K; Ohgane J; Tanaka S; Yagi S; Shiota K
    Int J Dev Biol; 2009; 53(2-3):203-14. PubMed ID: 19412882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells.
    Jackson M; Krassowska A; Gilbert N; Chevassut T; Forrester L; Ansell J; Ramsahoye B
    Mol Cell Biol; 2004 Oct; 24(20):8862-71. PubMed ID: 15456861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pluripotency associated genes are reactivated by chromatin-modifying agents in neurosphere cells.
    Ruau D; Ensenat-Waser R; Dinger TC; Vallabhapurapu DS; Rolletschek A; Hacker C; Hieronymus T; Wobus AM; Müller AM; Zenke M
    Stem Cells; 2008 Apr; 26(4):920-6. PubMed ID: 18203677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer.
    Zhong S; Fields CR; Su N; Pan YX; Robertson KD
    Oncogene; 2007 Apr; 26(18):2621-34. PubMed ID: 17043644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress.
    Illi B; Scopece A; Nanni S; Farsetti A; Morgante L; Biglioli P; Capogrossi MC; Gaetano C
    Circ Res; 2005 Mar; 96(5):501-8. PubMed ID: 15705964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular memory and hematopoietic stem cell aging.
    Kamminga LM; de Haan G
    Stem Cells; 2006 May; 24(5):1143-9. PubMed ID: 16456126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.