These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 1528115)

  • 1. Correction for liquid junction potentials in patch clamp experiments.
    Neher E
    Methods Enzymol; 1992; 207():123-31. PubMed ID: 1528115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-agar salt bridge in patch-clamp electrode holder stabilizes electrode potentials.
    Shao XM; Feldman JL
    J Neurosci Methods; 2007 Jan; 159(1):108-15. PubMed ID: 16916545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optimised 3 M KCl salt-bridge technique used to measure and validate theoretical liquid junction potential values in patch-clamping and electrophysiology.
    Barry PH; Lewis TM; Moorhouse AJ
    Eur Biophys J; 2013 Aug; 42(8):631-46. PubMed ID: 23794083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patch voltage clamping with low-resistance seals: loose patch clamp.
    Roberts WM; Almers W
    Methods Enzymol; 1992; 207():155-76. PubMed ID: 1382182
    [No Abstract]   [Full Text] [Related]  

  • 5. A unified procedure for the correction of liquid junction potentials in patch clamp experiments on endo- and plasma membranes.
    Amtmann A; Sanders D
    J Exp Bot; 1997 Mar; 48 Spec No():361-4. PubMed ID: 21245215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple intrapipette salt bridge.
    Kleene SJ
    J Neurosci Methods; 1993 Jan; 46(1):11-6. PubMed ID: 8459720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of Ion Concentration in the Unstirred Boundary Layer with Open Patch-Clamp Pipette: Implications in Control of Ion Channels by Fluid Flow.
    Kim JG; Park SW; Shin KC; Kim B; Byun D; Bae YM
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The silver-silver chloride electrode: a possible generator of offset voltages and currents.
    Raynauld JP; Laviolette JR
    J Neurosci Methods; 1987 Mar; 19(3):249-55. PubMed ID: 3573816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A convenient electrode holder for glass pipettes to stabilize electrode potentials.
    Snyder KV; Kriegstein AM; Sachs F
    Pflugers Arch; 1999 Aug; 438(3):405-11. PubMed ID: 10398874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sensitivity of liquid sensor, ion-selective microelectrodes to changes in temperature and solution level.
    Vaughan-Jones RD; Kaila K
    Pflugers Arch; 1986 Jun; 406(6):641-4. PubMed ID: 3714459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid junctions and isolated proximal tubule transepithelial potentials.
    Laprade R; Cardinal J
    Am J Physiol; 1983 Mar; 244(3):F304-19. PubMed ID: 6829763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiology in the eukaryotic model cell Saccharomyces cerevisiae.
    Bertl A; Bihler H; Kettner C; Slayman CL
    Pflugers Arch; 1998 Nov; 436(6):999-1013. PubMed ID: 9799419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements.
    Barry PH
    J Neurosci Methods; 1994 Jan; 51(1):107-16. PubMed ID: 8189746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new oil-gate concentration jump technique applied to inside-out patch-clamp recording.
    Qin DY; Noma A
    Am J Physiol; 1988 Oct; 255(4 Pt 2):H980-4. PubMed ID: 2459976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The resting membrane potential of frog sartorius muscle.
    Hironaka T; Morimoto S
    J Physiol; 1979 Dec; 297(0):1-8. PubMed ID: 536904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the hyperpolarization-activated K+ channel in the lateral membrane of the cortical collecting duct.
    Wang WH
    J Gen Physiol; 1995 Jul; 106(1):25-43. PubMed ID: 7494137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The measurement of ionic conductivities and mobilities of certain less common organic ions needed for junction potential corrections in electrophysiology.
    Ng B; Barry PH
    J Neurosci Methods; 1995 Jan; 56(1):37-41. PubMed ID: 7715244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of a Ag/AgCl reference electrode equipped with an ionic liquid salt bridge composed of 1-methyl-3-octylimidazolium bis(trifluoromethanesulfonyl)-amide in potentiometry of pH standard buffers.
    Shibata M; Yamanuki M; Iwamoto Y; Nomura S; Kakiuchi T
    Anal Sci; 2010; 26(11):1203-6. PubMed ID: 21079353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of fluid flow on voltage-dependent calcium channels in rat vascular myocytes: fluid flow as a shear stress and a source of artifacts during patch-clamp studies.
    Park SW; Byun D; Bae YM; Choi BH; Park SH; Kim B; Cho SI
    Biochem Biophys Res Commun; 2007 Jul; 358(4):1021-7. PubMed ID: 17524365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of H2O2, EGTA and patch pipette recording methods in feline ventricular myocytes.
    Barrington PL
    J Mol Cell Cardiol; 1994 May; 26(5):557-68. PubMed ID: 8072010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.