BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15281787)

  • 1. A mechanism-based cross-linker for the identification of kinase-substrate pairs.
    Maly DJ; Allen JA; Shokat KM
    J Am Chem Soc; 2004 Aug; 126(30):9160-1. PubMed ID: 15281787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent cross-linking of kinases with their corresponding peptide substrates.
    Statsuk AV; Shokat KM
    Methods Mol Biol; 2012; 795():179-90. PubMed ID: 21960223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method development and measurements of endogenous serine/threonine Akt phosphorylation using capillary electrophoresis for systems biology.
    Suresh Babu CV; Cho SG; Yoo YS
    Electrophoresis; 2005 Oct; 26(19):3765-72. PubMed ID: 16152671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation.
    Gual P; Le Marchand-Brustel Y; Tanti JF
    Biochimie; 2005 Jan; 87(1):99-109. PubMed ID: 15733744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of substrates for Ser/Thr kinases using residue-based statistical pair potentials.
    Kumar N; Mohanty D
    Bioinformatics; 2010 Jan; 26(2):189-97. PubMed ID: 19910306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in the protein kinase B signaling pathway.
    Woodgett JR
    Curr Opin Cell Biol; 2005 Apr; 17(2):150-7. PubMed ID: 15780591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autophosphorylation kinetics of protein kinases.
    Wang ZX; Wu JW
    Biochem J; 2002 Dec; 368(Pt 3):947-52. PubMed ID: 12190618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TSC1-2 tumour suppressor and regulation of mTOR signalling: linking cell growth and proliferation?
    Findlay GM; Harrington LS; Lamb RF
    Curr Opin Genet Dev; 2005 Feb; 15(1):69-76. PubMed ID: 15661536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for the identification of kinase substrates using analog-sensitive kinases.
    Koch A; Hauf S
    Eur J Cell Biol; 2010; 89(2-3):184-93. PubMed ID: 20061049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery and characterization of a substrate selective p38alpha inhibitor.
    Davidson W; Frego L; Peet GW; Kroe RR; Labadia ME; Lukas SM; Snow RJ; Jakes S; Grygon CA; Pargellis C; Werneburg BG
    Biochemistry; 2004 Sep; 43(37):11658-71. PubMed ID: 15362850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of the activities of AMP-activated protein kinase, protein kinase B, and mammalian target of rapamycin by limiting energy availability with 2-deoxyglucose.
    Jiang W; Zhu Z; Thompson HJ
    Mol Carcinog; 2008 Aug; 47(8):616-28. PubMed ID: 18247380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein kinase B from Giardia intestinalis.
    Kim KT; Mok MT; Edwards MR
    Biochem Biophys Res Commun; 2005 Aug; 334(2):333-41. PubMed ID: 16018966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bioinformatics-based approach for the prediction and identification of novel proteins potentially involved in phosphorylation signalling pathways.
    Ahn SK
    Int J Mol Med; 2003 Sep; 12(3):391-7. PubMed ID: 12883657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and crystal structures of protein kinase B-selective inhibitors in complex with protein kinase A and mutants.
    Breitenlechner CB; Friebe WG; Brunet E; Werner G; Graul K; Thomas U; Künkele KP; Schäfer W; Gassel M; Bossemeyer D; Huber R; Engh RA; Masjost B
    J Med Chem; 2005 Jan; 48(1):163-70. PubMed ID: 15634010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of protein kinase B by adenosine A1 and A3 receptors in newborn rat cardiomyocytes.
    Germack R; Griffin M; Dickenson JM
    J Mol Cell Cardiol; 2004 Nov; 37(5):989-99. PubMed ID: 15522276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Mycobacterium tuberculosis serine/threonine kinase PknL phosphorylates Rv2175c: mass spectrometric profiling of the activation loop phosphorylation sites and their role in the recruitment of Rv2175c.
    Canova MJ; Veyron-Churlet R; Zanella-Cleon I; Cohen-Gonsaud M; Cozzone AJ; Becchi M; Kremer L; Molle V
    Proteomics; 2008 Feb; 8(3):521-33. PubMed ID: 18175374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New candidate targets of AMP-activated protein kinase in murine brain revealed by a novel multidimensional substrate-screen for protein kinases.
    Tuerk RD; Thali RF; Auchli Y; Rechsteiner H; Brunisholz RA; Schlattner U; Wallimann T; Neumann D
    J Proteome Res; 2007 Aug; 6(8):3266-77. PubMed ID: 17608512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of protein kinase C theta activation loop autophosphorylation and the kinase domain catalytic mechanism.
    Czerwinski R; Aulabaugh A; Greco RM; Olland S; Malakian K; Wolfrom S; Lin L; Kriz R; Stahl M; Huang Y; Liu L; Chaudhary D
    Biochemistry; 2005 Jul; 44(28):9563-73. PubMed ID: 16008341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of in vitro kinase generated protein phosphorylation sites using gamma[18O4]-ATP and mass spectrometry.
    Zhou M; Meng Z; Jobson AG; Pommier Y; Veenstra TD
    Anal Chem; 2007 Oct; 79(20):7603-10. PubMed ID: 17877366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate.
    Hernández Sebastià C; Hardin SC; Clouse SD; Kieber JJ; Huber SC
    Arch Biochem Biophys; 2004 Aug; 428(1):81-91. PubMed ID: 15234272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.