BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

519 related articles for article (PubMed ID: 15281811)

  • 1. Nitroxides scavenge myeloperoxidase-catalyzed thiyl radicals in model systems and in cells.
    Borisenko GG; Martin I; Zhao Q; Amoscato AA; Kagan VE
    J Am Chem Soc; 2004 Aug; 126(30):9221-32. PubMed ID: 15281811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutathione propagates oxidative stress triggered by myeloperoxidase in HL-60 cells. Evidence for glutathionyl radical-induced peroxidation of phospholipids and cytotoxicity.
    Borisenko GG; Martin I; Zhao Q; Amoscato AA; Tyurina YY; Kagan VE
    J Biol Chem; 2004 May; 279(22):23453-62. PubMed ID: 15039448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity.
    Stoyanovsky DA; Goldman R; Claycamp HG; Kagan VE
    Arch Biochem Biophys; 1995 Mar; 317(2):315-23. PubMed ID: 7893144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and characterization of the electron paramagnetic resonance-silent glutathionyl-5,5-dimethyl-1-pyrroline N-oxide adduct derived from redox cycling of phenoxyl radicals in model systems and HL-60 cells.
    Stoyanovosky DA; Goldman R; Jonnalagadda SS; Day BW; Claycamp HG; Kagan VE
    Arch Biochem Biophys; 1996 Jun; 330(1):3-11. PubMed ID: 8651701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of nitroxide radicals by phenolic and thiol antioxidants.
    Hiramoto K; Ojima N; Kikugawa K
    Free Radic Res; 1997 Jul; 27(1):45-53. PubMed ID: 9269579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of the reaction between nitroxide and thiyl radicals: nitroxides as antioxidants in the presence of thiols.
    Goldstein S; Samuni A; Merenyi G
    J Phys Chem A; 2008 Sep; 112(37):8600-5. PubMed ID: 18729428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug-induced protein free radical formation is attenuated by unsaturated fatty acids by scavenging drug-derived phenyl radical metabolites.
    Narwaley M; Michail K; Arvadia P; Siraki AG
    Chem Res Toxicol; 2011 Jul; 24(7):1031-9. PubMed ID: 21671642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous intracellular glutathionyl radicals are generated in neuroblastoma cells under hydrogen peroxide oxidative stress.
    Kwak HS; Yim HS; Chock PB; Yim MB
    Proc Natl Acad Sci U S A; 1995 May; 92(10):4582-6. PubMed ID: 7753847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myeloperoxidase-catalyzed redox-cycling of phenol promotes lipid peroxidation and thiol oxidation in HL-60 cells.
    Goldman R; Claycamp GH; Sweetland MA; Sedlov AV; Tyurin VA; Kisin ER; Tyurina YY; Ritov VB; Wenger SL; Grant SG; Kagan VE
    Free Radic Biol Med; 1999 Nov; 27(9-10):1050-63. PubMed ID: 10569638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scavenging with TEMPO* to identify peptide- and protein-based radicals by mass spectrometry: advantages of spin scavenging over spin trapping.
    Wright PJ; English AM
    J Am Chem Soc; 2003 Jul; 125(28):8655-65. PubMed ID: 12848573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ascorbate interacts with reduced glutathione to scavenge phenoxyl radicals in HL60 cells.
    Cuddihy SL; Parker A; Harwood DT; Vissers MC; Winterbourn CC
    Free Radic Biol Med; 2008 Apr; 44(8):1637-44. PubMed ID: 18291121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nitroxide TEMPO is an efficient scavenger of protein radicals: cellular and kinetic studies.
    Pattison DI; Lam M; Shinde SS; Anderson RF; Davies MJ
    Free Radic Biol Med; 2012 Nov; 53(9):1664-74. PubMed ID: 22974763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of cyclic nitroxide radicals as HNO scavengers.
    Samuni Y; Samuni U; Goldstein S
    J Inorg Biochem; 2013 Jan; 118():155-61. PubMed ID: 23122928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aromatic and aliphatic mono- and bis-nitroxides: a study on their radical scavenging abilities.
    Damiani E; Castagna R; Astolfi P; Greci L
    Free Radic Res; 2005 Mar; 39(3):325-36. PubMed ID: 15788237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells: role of myeloperoxidase.
    Kagan VE; Kuzmenko AI; Tyurina YY; Shvedova AA; Matsura T; Yalowich JC
    Cancer Res; 2001 Nov; 61(21):7777-84. PubMed ID: 11691792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of superoxide dismutase mimics on radical adduct formation during the reaction between peroxynitrite and thiols--an ESR-spin trapping study.
    Karoui H; Hogg N; Joseph J; Kalyanaraman B
    Arch Biochem Biophys; 1996 Jun; 330(1):115-24. PubMed ID: 8651684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic studies of the reactions of nitrone spin trap PBN with glutathiyl radical.
    Polovyanenko DN; Plyusnin VF; Reznikov VA; Khramtsov VV; Bagryanskaya EG
    J Phys Chem B; 2008 Apr; 112(15):4841-7. PubMed ID: 18363401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-activity relationship studies of protective function of nitroxides in Fenton system.
    Glebska J; Pulaski L; Gwozdzinski K; Skolimowski J
    Biometals; 2001 Jun; 14(2):159-70. PubMed ID: 11508849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electron paramagnetic resonance study of the antioxidant properties of the nitroxide free radical TEMPO.
    Voest EE; van Faassen E; Marx JJ
    Free Radic Biol Med; 1993 Dec; 15(6):589-95. PubMed ID: 8138184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein radical formation during lactoperoxidase-mediated oxidation of the suicide substrate glutathione: immunochemical detection of a lactoperoxidase radical-derived 5,5-dimethyl-1-pyrroline N-oxide nitrone adduct.
    Guo Q; Detweiler CD; Mason RP
    J Biol Chem; 2004 Mar; 279(13):13272-83. PubMed ID: 14724284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.