These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 15281845)

  • 1. Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2004 Aug; 121(6):2483-90. PubMed ID: 15281845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiconfiguration self-consistent-field theory based upon the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2005 Feb; 122(5):54108. PubMed ID: 15740311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of the three-body fragment molecular orbital method applied to Møller-Plesset perturbation theory.
    Fedorov DG; Ishimura K; Ishida T; Kitaura K; Pulay P; Nagase S
    J Comput Chem; 2007 Jul; 28(9):1476-1484. PubMed ID: 17330884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Ishimura K; Kitaura K
    J Chem Phys; 2011 Jul; 135(4):044110. PubMed ID: 21806093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-basis second-order Moller-Plesset perturbation theory: A reduced-cost reference for correlation calculations.
    Steele RP; DiStasio RA; Shao Y; Kong J; Head-Gordon M
    J Chem Phys; 2006 Aug; 125(7):074108. PubMed ID: 16942323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled-cluster theory based upon the fragment molecular-orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2005 Oct; 123(13):134103. PubMed ID: 16223271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear-scaling atomic orbital-based second-order Møller-Plesset perturbation theory by rigorous integral screening criteria.
    Doser B; Lambrecht DS; Kussmann J; Ochsenfeld C
    J Chem Phys; 2009 Feb; 130(6):064107. PubMed ID: 19222267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An atomic orbital-based reformulation of energy gradients in second-order Møller-Plesset perturbation theory.
    Schweizer S; Doser B; Ochsenfeld C
    J Chem Phys; 2008 Apr; 128(15):154101. PubMed ID: 18433184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is spin-component scaled second-order Møller-Plesset perturbation theory an appropriate method for the study of noncovalent interactions in molecules?
    Antony J; Grimme S
    J Phys Chem A; 2007 Jun; 111(22):4862-8. PubMed ID: 17506533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: application to alanine tetrapeptide conformational analysis.
    Distasio RA; Steele RP; Rhee YM; Shao Y; Head-Gordon M
    J Comput Chem; 2007 Apr; 28(5):839-56. PubMed ID: 17219361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Second-order Møller-Plesset theory with linear R12 terms (MP2-R12) revisited: auxiliary basis set method and massively parallel implementation.
    Valeev EF; Janssen CL
    J Chem Phys; 2004 Jul; 121(3):1214-27. PubMed ID: 15260663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular tailoring approach in conjunction with MP2 and Ri-MP2 codes: A comparison with fragment molecular orbital method.
    Rahalkar AP; Katouda M; Gadre SR; Nagase S
    J Comput Chem; 2010 Oct; 31(13):2405-18. PubMed ID: 20652984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of three-body terms in the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2004 Apr; 120(15):6832-40. PubMed ID: 15267582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid correlation models based on active-space partitioning: seeking accurate O(N5) ab initio methods for bond breaking.
    Bochevarov AD; Temelso B; Sherrill CD
    J Chem Phys; 2006 Aug; 125(5):054109. PubMed ID: 16942205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid scheme for the resolution-of-the-identity approximation in second-order Møller-Plesset linear-r(12) perturbation theory.
    Klopper W
    J Chem Phys; 2004 Jun; 120(23):10890-5. PubMed ID: 15268119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Gaussian-type geminals in local second-order Møller-Plesset perturbation theory.
    Polly R; Werner HJ; Dahle P; Taylor PR
    J Chem Phys; 2006 Jun; 124(23):234107. PubMed ID: 16821907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy and limitations of second-order many-body perturbation theory for predicting vertical detachment energies of solvated-electron clusters.
    Herbert JM; Head-Gordon M
    Phys Chem Chem Phys; 2006 Jan; 8(1):68-78. PubMed ID: 16482246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Well-balanced basis sets for second-order Møller-Plesset treatment of argon-aromatic molecule complexes.
    Makarewicz J
    J Chem Phys; 2004 Nov; 121(18):8755-68. PubMed ID: 15527339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.