These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 15281878)
1. Study of the hydrostatic pressure dependence of the Raman spectrum of single-walled carbon nanotubes and nanospheres. Amer MS; El-Ashry MM; Maguire JF J Chem Phys; 2004 Aug; 121(6):2752-7. PubMed ID: 15281878 [TBL] [Abstract][Full Text] [Related]
2. High-pressure induced conformational and phase transformations of 1,2-dichloroethane probed by Raman spectroscopy. Sabharwal RJ; Huang Y; Song Y J Phys Chem B; 2007 Jun; 111(25):7267-73. PubMed ID: 17523618 [TBL] [Abstract][Full Text] [Related]
3. NMR spectroscopy of hydrogen adsorption on single-walled carbon nanotubes after exposure to high pressure. Pietrass T; Shen K Solid State Nucl Magn Reson; 2006 Feb; 29(1-3):125-31. PubMed ID: 16263250 [TBL] [Abstract][Full Text] [Related]
4. Raman scattering studies of the high-pressure stability of pentaerythritol tetranitrate, C(CH2ONO2)4. Lipinska-Kalita KE; Pravica MG; Nicol M J Phys Chem B; 2005 Oct; 109(41):19223-7. PubMed ID: 16853482 [TBL] [Abstract][Full Text] [Related]
5. Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation. Agnihotri S; Mota JP; Rostam-Abadi M; Rood MJ Langmuir; 2005 Feb; 21(3):896-904. PubMed ID: 15667165 [TBL] [Abstract][Full Text] [Related]
6. Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface-enhanced Raman spectroscopy. Chu H; Wang J; Ding L; Yuan D; Zhang Y; Liu J; Li Y J Am Chem Soc; 2009 Oct; 131(40):14310-6. PubMed ID: 19764748 [TBL] [Abstract][Full Text] [Related]
7. High pressure Raman spectroscopy of single crystals of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Dreger ZA; Gupta YM J Phys Chem B; 2007 Apr; 111(15):3893-903. PubMed ID: 17388552 [TBL] [Abstract][Full Text] [Related]
8. Properties of diamond under hydrostatic pressures up to 140 GPa. Occelli F; Loubeyre P; LeToullec R Nat Mater; 2003 Mar; 2(3):151-4. PubMed ID: 12612670 [TBL] [Abstract][Full Text] [Related]
9. Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition. Min YS; Bae EJ; Oh BS; Kang D; Park W J Am Chem Soc; 2005 Sep; 127(36):12498-9. PubMed ID: 16144391 [TBL] [Abstract][Full Text] [Related]
10. A comparative study of single-walled carbon nanotube purification techniques using Raman spectroscopy. Musumeci AW; Waclawik ER; Frost RL Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):140-2. PubMed ID: 18207450 [TBL] [Abstract][Full Text] [Related]
12. Raman studies of hydrogen adsorbed on nanostructured porous materials. Panella B; Hirscher M Phys Chem Chem Phys; 2008 May; 10(20):2910-7. PubMed ID: 18473039 [TBL] [Abstract][Full Text] [Related]
13. Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties. Zhang L; Balzano L; Resasco DE J Phys Chem B; 2005 Aug; 109(30):14375-81. PubMed ID: 16852808 [TBL] [Abstract][Full Text] [Related]
14. In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion. Kim YA; Kojima M; Muramatsu H; Umemoto S; Watanabe T; Yoshida K; Sato K; Ikeda T; Hayashi T; Endo M; Terrones M; Dresselhaus MS Small; 2006 May; 2(5):667-76. PubMed ID: 17193105 [TBL] [Abstract][Full Text] [Related]
15. The intermediate frequency modes of single- and double-walled carbon nanotubes: a Raman spectroscopic and in situ Raman spectroelectrochemical study. Kalbac M; Kavan L; Zukalová M; Dunsch L Chemistry; 2006 May; 12(16):4451-7. PubMed ID: 16552794 [TBL] [Abstract][Full Text] [Related]
16. Insights on charge transfer doping and intrinsic phonon line shape of carbon nanotubes by simple polymer adsorption. Shim M; Ozel T; Gaur A; Wang C J Am Chem Soc; 2006 Jun; 128(23):7522-30. PubMed ID: 16756307 [TBL] [Abstract][Full Text] [Related]
17. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes. Bichoutskaia E; Pyper NC J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212 [TBL] [Abstract][Full Text] [Related]
18. Charge transfer from metallic single-walled carbon nanotube sensor arrays. Lee CY; Baik S; Zhang J; Masel RI; Strano MS J Phys Chem B; 2006 Jun; 110(23):11055-61. PubMed ID: 16771365 [TBL] [Abstract][Full Text] [Related]
19. [Raman spectra of carbon nanotubes produced in different inert atmosphere and their pressures]. He YY; Zhang HY; Wu CY; Zhu YJ; Liang YB; Chen YM Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Aug; 22(4):584-7. PubMed ID: 12938371 [TBL] [Abstract][Full Text] [Related]
20. Optical band gap modification of single-walled carbon nanotubes by encapsulated fullerenes. Okazaki T; Okubo S; Nakanishi T; Joung SK; Saito T; Otani M; Okada S; Bandow S; Iijima S J Am Chem Soc; 2008 Mar; 130(12):4122-8. PubMed ID: 18311979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]