These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 15281881)

  • 1. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth.
    Ding F; Rosén A; Bolton K
    J Chem Phys; 2004 Aug; 121(6):2775-9. PubMed ID: 15281881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Narrowing SWNT diameter distribution using size-separated ferritin-based Fe catalysts.
    Durrer L; Greenwald J; Helbling T; Muoth M; Riek R; Hierold C
    Nanotechnology; 2009 Sep; 20(35):355601. PubMed ID: 19671985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition.
    Jodin L; Dupuis AC; Rouvière E; Reiss P
    J Phys Chem B; 2006 Apr; 110(14):7328-33. PubMed ID: 16599506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth velocity and direct length-sorted growth of short single-walled carbon nanotubes by a metal-catalyst-free chemical vapor deposition process.
    Liu B; Ren W; Liu C; Sun CH; Gao L; Li S; Jiang C; Cheng HM
    ACS Nano; 2009 Nov; 3(11):3421-30. PubMed ID: 19856907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CVD growth of single-walled carbon nanotubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy.
    Ago H; Imamura S; Okazaki T; Saito T; Yumura M; Tsuji M
    J Phys Chem B; 2005 May; 109(20):10035-41. PubMed ID: 16852214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential growth of single-walled carbon nanotubes on silica spheres by chemical vapor deposition.
    Zhou W; Zhang Y; Li X; Yuan S; Jin Z; Xu J; Li Y
    J Phys Chem B; 2005 Apr; 109(15):6963-7. PubMed ID: 16851790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle.
    Ohta Y; Okamoto Y; Page AJ; Irle S; Morokuma K
    ACS Nano; 2009 Nov; 3(11):3413-20. PubMed ID: 19827761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphitic encapsulation of catalyst particles in carbon nanotube production.
    Ding F; Rosén A; Campbell EE; Falk LK; Bolton K
    J Phys Chem B; 2006 Apr; 110(15):7666-70. PubMed ID: 16610858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions.
    Yao Y; Li Q; Zhang J; Liu R; Jiao L; Zhu YT; Liu Z
    Nat Mater; 2007 Apr; 6(4):283-6. PubMed ID: 17369833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constrained iron catalysts for single-walled carbon nanotube growth.
    Kramer RM; Sowards LA; Pender MJ; Stone MO; Naik RR
    Langmuir; 2005 Aug; 21(18):8466-70. PubMed ID: 16114958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding.
    Lu C; Liu J
    J Phys Chem B; 2006 Oct; 110(41):20254-7. PubMed ID: 17034203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct deposition of single-walled carbon nanotube thin films via electrostatic spray assisted chemical vapor deposition.
    Hsieh YP; Hofmann M; Son H; Jia X; Chen YF; Liang CT; Dresselhaus MS; Kong J
    Nanotechnology; 2009 Feb; 20(6):065601. PubMed ID: 19417389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diameter-selective growth of single-walled carbon nanotubes with high quality by floating catalyst method.
    Liu Q; Ren W; Chen ZG; Wang DW; Liu B; Yu B; Li F; Cong H; Cheng HM
    ACS Nano; 2008 Aug; 2(8):1722-8. PubMed ID: 19206377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets.
    Pint CL; Xu YQ; Pasquali M; Hauge RH
    ACS Nano; 2008 Sep; 2(9):1871-8. PubMed ID: 19206427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid growth of a single-walled carbon nanotube on an iron cluster: density-functional tight-binding molecular dynamics simulations.
    Ohta Y; Okamoto Y; Irle S; Morokuma K
    ACS Nano; 2008 Jul; 2(7):1437-44. PubMed ID: 19206312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes.
    Huang L; White B; Sfeir MY; Huang M; Huang HX; Wind S; Hone J; O'Brien S
    J Phys Chem B; 2006 Jun; 110(23):11103-9. PubMed ID: 16771372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative temperature coefficient of single-walled carbon nanotube-gold nanoparticle hybrid structures.
    Songmee N; Daothong S; Singjai P
    J Nanosci Nanotechnol; 2008 May; 8(5):2522-5. PubMed ID: 18572677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.