These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 15282170)

  • 1. Thermodynamic and choreographic constraints for energy transduction by cytochrome c oxidase.
    Xavier AV
    Biochim Biophys Acta; 2004 Jul; 1658(1-2):23-30. PubMed ID: 15282170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mechano-chemical model for energy transduction in cytochrome c oxidase: the work of a Maxwell's god.
    Xavier AV
    FEBS Lett; 2002 Dec; 532(3):261-6. PubMed ID: 12482576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic study of the proton pumping mechanism in bovine heart cytochrome C oxidase.
    Popović DM; Stuchebrukhov AA
    J Am Chem Soc; 2004 Feb; 126(6):1858-71. PubMed ID: 14871119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic volume cycles for electron transfer in the cytochrome c oxidase and for the binding of cytochrome c to cytochrome c oxidase.
    Kornblatt JA; Kornblatt MJ; Rajotte I; Hoa GH; Kahn PC
    Biophys J; 1998 Jul; 75(1):435-44. PubMed ID: 9649404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory conservation of energy with dioxygen: cytochrome C oxidase.
    Yoshikawa S; Shimada A; Shinzawa-Itoh K
    Met Ions Life Sci; 2015; 15():89-130. PubMed ID: 25707467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the cytochrome c oxidase proton pump: thermodynamics of redox linkage.
    Musser SM; Chan SI
    Biophys J; 1995 Jun; 68(6):2543-55. PubMed ID: 7647257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox interactions in cytochrome c oxidase: from the "neoclassical" toward "modern" models.
    Hendler RW; Westerhoff HV
    Biophys J; 1992 Dec; 63(6):1586-604. PubMed ID: 1336989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic characterization of triheme cytochrome PpcA from Geobacter sulfurreducens: evidence for a role played in e-/H+ energy transduction.
    Pessanha M; Morgado L; Louro RO; Londer YY; Pokkuluri PR; Schiffer M; Salgueiro CA
    Biochemistry; 2006 Nov; 45(46):13910-7. PubMed ID: 17105209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and mechanistic studies of cytochrome c3 from Desulfovibrio gigas: thermodynamics of a "proton thruster".
    Louro RO; Catarino T; Turner DL; Piçarra-Pereira MA; Pacheco I; LeGall J; Xavier AV
    Biochemistry; 1998 Nov; 37(45):15808-15. PubMed ID: 9843386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cooperative model for proton pumping in cytochrome c oxidase.
    Papa S; Capitanio N; Capitanio G
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):353-64. PubMed ID: 15100051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry.
    Zhang P; Yuly JL; Lubner CE; Mulder DW; King PW; Peters JW; Beratan DN
    Acc Chem Res; 2017 Sep; 50(9):2410-2417. PubMed ID: 28876046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of the terminal electron transfer step in cytochrome c oxidase.
    Tipmanee V; Blumberger J
    J Phys Chem B; 2012 Feb; 116(6):1876-83. PubMed ID: 22243050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protonmotive cooperativity in cytochrome c oxidase.
    Papa S; Capitanio N; Capitanio G; Palese LL
    Biochim Biophys Acta; 2004 Jul; 1658(1-2):95-105. PubMed ID: 15282180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton pumping in cytochrome c oxidase: energetic requirements and the role of two proton channels.
    Blomberg MR; Siegbahn PE
    Biochim Biophys Acta; 2014 Jul; 1837(7):1165-77. PubMed ID: 24418352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton exit channels in bovine cytochrome c oxidase.
    Popović DM; Stuchebrukhov AA
    J Phys Chem B; 2005 Feb; 109(5):1999-2006. PubMed ID: 16851184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The protonation state of a heme propionate controls electron transfer in cytochrome c oxidase.
    Brändén G; Brändén M; Schmidt B; Mills DA; Ferguson-Miller S; Brzezinski P
    Biochemistry; 2005 Aug; 44(31):10466-74. PubMed ID: 16060655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A theoretical investigation of the functional role of the axial methionine ligand of the Cu(A) site in cytochrome c oxidase.
    Kang J; Kino H; Tateno M
    Biochim Biophys Acta; 2011 Oct; 1807(10):1314-27. PubMed ID: 21745457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal electron-transfer reactions in cytochrome c oxidase.
    Brzezinski P
    Biochemistry; 1996 May; 35(18):5611-5. PubMed ID: 8639518
    [No Abstract]   [Full Text] [Related]  

  • 19. Interaction of cytochrome c with cytochrome oxidase: two different docking scenarios.
    Maneg O; Malatesta F; Ludwig B; Drosou V
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):274-81. PubMed ID: 15100042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton thrusters: overview of the structural and functional features of soluble tetrahaem cytochromes c3.
    Louro RO
    J Biol Inorg Chem; 2007 Jan; 12(1):1-10. PubMed ID: 16964504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.