These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 15282170)

  • 21. Simulating redox coupled proton transfer in cytochrome c oxidase: looking for the proton bottleneck.
    Olsson MH; Sharma PK; Warshel A
    FEBS Lett; 2005 Apr; 579(10):2026-34. PubMed ID: 15811313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization and redox properties of cytochrome c552 from Thermus thermophilus adsorbed on different self-assembled thiol monolayers, used to model the chemical environment of the redox partner.
    Bernad S; Soulimane T; Mehkalif Z; Lecomte S
    Biopolymers; 2006 Apr; 81(5):407-18. PubMed ID: 16365847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural basis for the network of functional cooperativities in cytochrome c(3) from Desulfovibrio gigas: solution structures of the oxidised and reduced states.
    Brennan L; Turner DL; Messias AC; Teodoro ML; LeGall J; Santos H; Xavier AV
    J Mol Biol; 2000 Apr; 298(1):61-82. PubMed ID: 10756105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox equilibration after one-electron reduction of cytochrome c oxidase: radical formation and a possible hydrogen relay mechanism.
    Ashe D; Alleyne T; Wilson M; Svistunenko D; Nicholls P
    Arch Biochem Biophys; 2014 Jul; 554():36-43. PubMed ID: 24811894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping protein dynamics in catalytic intermediates of the redox-driven proton pump cytochrome c oxidase.
    Busenlehner LS; Salomonsson L; Brzezinski P; Armstrong RN
    Proc Natl Acad Sci U S A; 2006 Oct; 103(42):15398-403. PubMed ID: 17023543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cooperativity between electrons and protons in a monomeric cytochrome c(3): the importance of mechano-chemical coupling for energy transduction.
    Louro RO; Catarino T; LeGall J; Turner DL; Xavier AV
    Chembiochem; 2001 Nov; 2(11):831-7. PubMed ID: 11948869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Redox-state sensing by hydrogen bonds in the CuA center of cytochrome c oxidase.
    Abriata LA; Vila AJ
    J Inorg Biochem; 2014 Mar; 132():18-20. PubMed ID: 24012017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substrate binding-dissociation and intermolecular electron transfer in cytochrome c oxidase are driven by energy-dependent conformational changes in the enzyme and substrate.
    Ashe D; Alleyne T; Sampson V
    Biotechnol Appl Biochem; 2012; 59(3):213-22. PubMed ID: 23586831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Why is the reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR) not electrogenic?
    Blomberg MR; Siegbahn PE
    Biochim Biophys Acta; 2013 Jul; 1827(7):826-33. PubMed ID: 23618787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The "ferrous-oxy" intermediate in the reaction of dioxygen with fully reduced cytochromes aa3 and bo3.
    Verkhovsky MI; Morgan JE; Puustinen A; Wikström M
    Biochemistry; 1996 Dec; 35(50):16241-6. PubMed ID: 8973197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acidity of a Cu-bound histidine in the binuclear center of cytochrome C oxidase.
    Fadda E; Chakrabarti N; Pomès R
    J Phys Chem B; 2005 Dec; 109(47):22629-40. PubMed ID: 16853946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solvent effects on the physicochemical properties of the cross-linked histidine-tyrosine ligand of cytochrome c oxidase.
    McDonald WJ; Einarsdóttir O
    J Phys Chem B; 2010 May; 114(19):6409-25. PubMed ID: 20415431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular modeling of the ternary complex of Rusticyanin-cytochrome c4-cytochrome oxidase: an insight to possible H-bond mediated recognition and electron transfer reaction in T. ferrooxidans.
    Mukhopadhyay BP; Ghosh B; Bairagya HR; Nandi TK; Chakrabarti B; Bera AK
    J Biomol Struct Dyn; 2008 Apr; 25(5):543-51. PubMed ID: 18282009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High voltage redox properties of cytochrome c oxidase.
    Hendler RW; Sidhu GS; Pardhasaradhi K
    Biophys J; 1990 Oct; 58(4):957-67. PubMed ID: 2174273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prevention of leak in the proton pump of cytochrome c oxidase.
    Kaila VR; Verkhovsky M; Hummer G; Wikström M
    Biochim Biophys Acta; 2008; 1777(7-8):890-2. PubMed ID: 18423393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox dependent interactions of the metal sites in carbon monoxide-bound cytochrome c oxidase monitored by infrared and UV/visible spectroelectrochemical methods.
    Dodson ED; Zhao XJ; Caughey WS; Elliott CM
    Biochemistry; 1996 Jan; 35(2):444-52. PubMed ID: 8555214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DFT/electrostatic calculations of pK(a) values in cytochrome c oxidase.
    Popović DM; Quenneville J; Stuchebrukhov AA
    J Phys Chem B; 2005 Mar; 109(8):3616-26. PubMed ID: 16851400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytochrome c oxidase: Intermediates of the catalytic cycle and their energy-coupled interconversion.
    Konstantinov AA
    FEBS Lett; 2012 Mar; 586(5):630-9. PubMed ID: 21889506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox Bohr effects and the role of heme a in the proton pump of bovine heart cytochrome c oxidase.
    Capitanio G; Martino PL; Capitanio N; Papa S
    Biochim Biophys Acta; 2011 Oct; 1807(10):1287-94. PubMed ID: 21320464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermodynamic redox behavior of the heme centers of cbb3 heme-copper oxygen reductase from Bradyrhizobium japonicum.
    Veríssimo AF; Sousa FL; Baptista AM; Teixeira M; Pereira MM
    Biochemistry; 2007 Nov; 46(46):13245-53. PubMed ID: 17963363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.