These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 15282543)
1. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. Poortinga G; Hannan KM; Snelling H; Walkley CR; Jenkins A; Sharkey K; Wall M; Brandenburger Y; Palatsides M; Pearson RB; McArthur GA; Hannan RD EMBO J; 2004 Aug; 23(16):3325-35. PubMed ID: 15282543 [TBL] [Abstract][Full Text] [Related]
2. c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation. Poortinga G; Wall M; Sanij E; Siwicki K; Ellul J; Brown D; Holloway TP; Hannan RD; McArthur GA Nucleic Acids Res; 2011 Apr; 39(8):3267-81. PubMed ID: 21177653 [TBL] [Abstract][Full Text] [Related]
3. MAD1 and p27(KIP1) cooperate to promote terminal differentiation of granulocytes and to inhibit Myc expression and cyclin E-CDK2 activity. McArthur GA; Foley KP; Fero ML; Walkley CR; Deans AJ; Roberts JM; Eisenman RN Mol Cell Biol; 2002 May; 22(9):3014-23. PubMed ID: 11940659 [TBL] [Abstract][Full Text] [Related]
4. SUMOylation down-regulates rDNA transcription by repressing expression of upstream-binding factor and proto-oncogene c-Myc. Peng Y; Wang Z; Wang Z; Yu F; Li J; Wong J J Biol Chem; 2019 Dec; 294(50):19155-19166. PubMed ID: 31694914 [TBL] [Abstract][Full Text] [Related]
5. Treacle recruits RNA polymerase I complex to the nucleolus that is independent of UBF. Lin CI; Yeh NH Biochem Biophys Res Commun; 2009 Aug; 386(2):396-401. PubMed ID: 19527688 [TBL] [Abstract][Full Text] [Related]
6. Mad1 expression in the absence of differentiation: effect of cAMP on the B-lymphoid cell line Reh. Naderi S; Blomhoff HK J Cell Physiol; 1999 Jan; 178(1):76-84. PubMed ID: 9886493 [TBL] [Abstract][Full Text] [Related]
7. Identification of the molecular requirements for an RAR alpha-mediated cell cycle arrest during granulocytic differentiation. Walkley CR; Purton LE; Snelling HJ; Yuan YD; Nakajima H; Chambon P; Chandraratna RA; McArthur GA Blood; 2004 Feb; 103(4):1286-95. PubMed ID: 14576045 [TBL] [Abstract][Full Text] [Related]
8. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Hannan KM; Brandenburger Y; Jenkins A; Sharkey K; Cavanaugh A; Rothblum L; Moss T; Poortinga G; McArthur GA; Pearson RB; Hannan RD Mol Cell Biol; 2003 Dec; 23(23):8862-77. PubMed ID: 14612424 [TBL] [Abstract][Full Text] [Related]
9. RINT-1 interacts with MSP58 within nucleoli and plays a role in ribosomal gene transcription. Yang CP; Kuo YL; Lee YC; Lee KH; Chiang CW; Wang JM; Hsu CC; Chang WC; Lin DY Biochem Biophys Res Commun; 2016 Sep; 478(2):873-80. PubMed ID: 27530925 [TBL] [Abstract][Full Text] [Related]
10. Co-induction of Mad1 and c-Myc in activated normal B lymphocytes. Ertesvåg A; Blomhoff HK; Beiske K; Naderi S Scand J Immunol; 2000 Jun; 51(6):565-70. PubMed ID: 10849366 [TBL] [Abstract][Full Text] [Related]
12. The cell cycle regulatory factor TAF1 stimulates ribosomal DNA transcription by binding to the activator UBF. Lin CY; Tuan J; Scalia P; Bui T; Comai L Curr Biol; 2002 Dec; 12(24):2142-6. PubMed ID: 12498690 [TBL] [Abstract][Full Text] [Related]
13. TBP-TAF complex SL1 directs RNA polymerase I pre-initiation complex formation and stabilizes upstream binding factor at the rDNA promoter. Friedrich JK; Panov KI; Cabart P; Russell J; Zomerdijk JC J Biol Chem; 2005 Aug; 280(33):29551-8. PubMed ID: 15970593 [TBL] [Abstract][Full Text] [Related]
14. Che-1/AATF binds to RNA polymerase I machinery and sustains ribosomal RNA gene transcription. Sorino C; Catena V; Bruno T; De Nicola F; Scalera S; Bossi G; Fabretti F; Mano M; De Smaele E; Fanciulli M; Iezzi S Nucleic Acids Res; 2020 Jun; 48(11):5891-5906. PubMed ID: 32421830 [TBL] [Abstract][Full Text] [Related]
15. Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1. Hannan KM; Hannan RD; Smith SD; Jefferson LS; Lun M; Rothblum LI Oncogene; 2000 Oct; 19(43):4988-99. PubMed ID: 11042686 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of cell proliferation by the Mad1 transcriptional repressor. Roussel MF; Ashmun RA; Sherr CJ; Eisenman RN; Ayer DE Mol Cell Biol; 1996 Jun; 16(6):2796-801. PubMed ID: 8649388 [TBL] [Abstract][Full Text] [Related]
17. The HBx oncoprotein of hepatitis B virus potentiates cell transformation by inducing c-Myc-dependent expression of the RNA polymerase I transcription factor UBF. Rajput P; Shukla SK; Kumar V Virol J; 2015 Apr; 12():62. PubMed ID: 25890091 [TBL] [Abstract][Full Text] [Related]
18. Modulation of T-lymphocyte development, growth and cell size by the Myc antagonist and transcriptional repressor Mad1. Iritani BM; Delrow J; Grandori C; Gomez I; Klacking M; Carlos LS; Eisenman RN EMBO J; 2002 Sep; 21(18):4820-30. PubMed ID: 12234922 [TBL] [Abstract][Full Text] [Related]
19. Ectopically expressed pNO40 suppresses ribosomal RNA synthesis by inhibiting UBF-dependent transcription activation. Lin YM; Chu PH; Ouyang P Biochem Biophys Res Commun; 2019 Aug; 516(2):381-387. PubMed ID: 31217076 [TBL] [Abstract][Full Text] [Related]
20. Combined IFN-gamma and retinoic acid treatment targets the N-Myc/Max/Mad1 network resulting in repression of N-Myc target genes in MYCN-amplified neuroblastoma cells. Cetinkaya C; Hultquist A; Su Y; Wu S; Bahram F; Påhlman S; Guzhova I; Larsson LG Mol Cancer Ther; 2007 Oct; 6(10):2634-41. PubMed ID: 17938259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]