These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15282550)

  • 1. True reversal of Mu integration.
    Au TK; Pathania S; Harshey RM
    EMBO J; 2004 Aug; 23(16):3408-20. PubMed ID: 15282550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-site synapsis during Mu DNA transposition: a critical intermediate preceding engagement of the active site.
    Watson MA; Chaconas G
    Cell; 1996 May; 85(3):435-45. PubMed ID: 8616898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of the conserved CA dinucleotide at Mu termini.
    Lee I; Harshey RM
    J Mol Biol; 2001 Nov; 314(3):433-44. PubMed ID: 11846557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation.
    Mizuuchi M; Mizuuchi K
    Cell; 1989 Jul; 58(2):399-408. PubMed ID: 2546681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-protein complexes during attachment-site synapsis in Mu DNA transposition.
    Kuo CF; Zou AH; Jayaram M; Getzoff E; Harshey R
    EMBO J; 1991 Jun; 10(6):1585-91. PubMed ID: 1851088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron microscopic analysis of in vitro transposition intermediates of bacteriophage Mu DNA.
    Miller JL; Chaconas G
    Gene; 1986; 48(1):101-8. PubMed ID: 3030893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and structural probing of the precleavage synaptic complex (type 0) formed during phage Mu transposition. Action of metal ions and reagents specific to single-stranded DNA.
    Wang Z; Namgoong SY; Zhang X; Harshey RM
    J Biol Chem; 1996 Apr; 271(16):9619-26. PubMed ID: 8621637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of transposase activity within a transpososome by the configuration of the flanking DNA segment of the transposon.
    Mizuuchi M; Rice PA; Wardle SJ; Haniford DB; Mizuuchi K
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14622-7. PubMed ID: 17785414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Transposition as a way of existence: phage Mu].
    Mit'kina LN
    Genetika; 2003 May; 39(5):637-56. PubMed ID: 12838611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transpososomes: stable protein-DNA complexes involved in the in vitro transposition of bacteriophage Mu DNA.
    Surette MG; Buch SJ; Chaconas G
    Cell; 1987 Apr; 49(2):253-62. PubMed ID: 3032448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transposition of bacteriophage Mu: properties of lambda phages containing both ends of Mu.
    Howe MM; Schumm JW
    Cold Spring Harb Symp Quant Biol; 1981; 45 Pt 1():337-46. PubMed ID: 6271481
    [No Abstract]   [Full Text] [Related]  

  • 12. Two mutations of phage mu transposase that affect strand transfer or interactions with B protein lie in distinct polypeptide domains.
    Leung PC; Harshey RM
    J Mol Biol; 1991 May; 219(2):189-99. PubMed ID: 1645409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cis-acting DNA sequences required in vivo for bacteriophage Mu helper-mediated transposition and packaging.
    Harel J; Duplessis L; Kahn JS; DuBow MS
    Arch Microbiol; 1990; 154(1):67-72. PubMed ID: 2168695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new set of Mu DNA transposition intermediates: alternate pathways of target capture preceding strand transfer.
    Naigamwalla DZ; Chaconas G
    EMBO J; 1997 Sep; 16(17):5227-34. PubMed ID: 9311983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microarray analysis of transposition targets in Escherichia coli: the impact of transcription.
    Manna D; Breier AM; Higgins NP
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9780-5. PubMed ID: 15210965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient insertion mutagenesis strategy for bacterial genomes involving electroporation of in vitro-assembled DNA transposition complexes of bacteriophage mu.
    Lamberg A; Nieminen S; Qiao M; Savilahti H
    Appl Environ Microbiol; 2002 Feb; 68(2):705-12. PubMed ID: 11823210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization and dynamics of the Mu transpososome: recombination by communication between two active sites.
    Williams TL; Jackson EL; Carritte A; Baker TA
    Genes Dev; 1999 Oct; 13(20):2725-37. PubMed ID: 10541558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of DNA topology in Mu transposition: mechanism of sensing the relative orientation of two DNA segments.
    Craigie R; Mizuuchi K
    Cell; 1986 Jun; 45(6):793-800. PubMed ID: 3011279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonreplicative DNA transposition: integration of infecting bacteriophage mu.
    Harshey RM
    Cold Spring Harb Symp Quant Biol; 1984; 49():273-8. PubMed ID: 6099241
    [No Abstract]   [Full Text] [Related]  

  • 20. Transposition studies of mini-Mu plasmids constructed from the chemically synthesized ends of bacteriophage Mu.
    Patterson TA; Court DL; Dubuc G; Michniewicz JJ; Goodchild J; Bukhari AI; Narang SA
    Gene; 1986; 50(1-3):101-9. PubMed ID: 3034727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.