These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 15282948)
21. Susceptibility of Agrotis segetum (noctuidae) to Bacillus thuringiensis and analysis of midgut proteinases. Ben Hamadou-Charfi D; Sauer AJ; Abdelkefi-Mesrati L; Tounsi S; Jaoua S; Stephan D Prep Biochem Biotechnol; 2015; 45(5):411-20. PubMed ID: 24839868 [TBL] [Abstract][Full Text] [Related]
22. Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera. Abedi Z; Saber M; Vojoudi S; Mahdavi V; Parsaeyan E J Insect Sci; 2014 Feb; 14():30. PubMed ID: 25373177 [TBL] [Abstract][Full Text] [Related]
23. Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua. Zhu C; Ruan L; Peng D; Yu Z; Sun M Lett Appl Microbiol; 2006 Feb; 42(2):109-14. PubMed ID: 16441373 [TBL] [Abstract][Full Text] [Related]
24. Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India. Gujar GT; Kalia V; Kumari A; Singh BP; Mittal A; Nair R; Mohan M J Invertebr Pathol; 2007 Jul; 95(3):214-9. PubMed ID: 17475275 [TBL] [Abstract][Full Text] [Related]
25. Purification of Vip3Aa from Bacillus thuringiensis HD-1 and its contribution to toxicity of HD-1 to spruce budworm (Choristoneura fumiferana) and gypsy moth (Lymantria dispar) (Lepidoptera). Milne R; Liu Y; Gauthier D; van Frankenhuyzen K J Invertebr Pathol; 2008 Oct; 99(2):166-72. PubMed ID: 18585733 [TBL] [Abstract][Full Text] [Related]
26. A highly pathogenic strain of Bacillus thuringiensis serovar kurstaki in lepidopteran pests. Kati H; Sezen K; Nalcacioglu R; Demirbag Z J Microbiol; 2007 Dec; 45(6):553-7. PubMed ID: 18176540 [TBL] [Abstract][Full Text] [Related]
28. Degradation of the insecticidal toxin produced by Bacillus thuringiensis var. kurstaki by extracellular proteases produced by Chrysosporium sp. Padmaja T; Suneetha N; Sashidhar RB; Sharma HC; Deshpande V; Venkateswerlu G J Appl Microbiol; 2008 Apr; 104(4):1171-81. PubMed ID: 18028364 [TBL] [Abstract][Full Text] [Related]
29. Characterization of Helicoverpa armigera gut proteinases and their interaction with proteinase inhibitors using gel X-ray film contact print technique. Harsulkar AM; Giri AP; Gupta VS; Sainani MN; Deshpande VV; Patankar AG; Ranjekar PK Electrophoresis; 1998 Jun; 19(8-9):1397-402. PubMed ID: 9694289 [TBL] [Abstract][Full Text] [Related]
30. Behavioral and Developmental Responses of Habrobracon hebetor (Hymenoptera: Braconidae) to Larvae of Helicoverpa armigera (Lepidoptera: Noctuidae) Inoculated With Various Concentrations of Bacillus thuringiensis var. kurstaki (Bacillales: Bacillacae). Allahyari R; Aramideh S; Michaud JP; Safaralizadeh MH; Rezapanah MR J Insect Sci; 2020 Nov; 20(6):. PubMed ID: 33232487 [TBL] [Abstract][Full Text] [Related]
31. Podborer (Helicoverpa armigera Hübn.) does not show specific adaptations in gut proteinases to dietary Cicer arietinum Kunitz proteinase inhibitor. Srinivasan A; Chougule NP; Giri AP; Gatehouse JA; Gupta VS J Insect Physiol; 2005 Nov; 51(11):1268-76. PubMed ID: 16140320 [TBL] [Abstract][Full Text] [Related]
32. Diverse forms of Pin-II family proteinase inhibitors from Capsicum annuum adversely affect the growth and development of Helicoverpa armigera. Tamhane VA; Giri AP; Sainani MN; Gupta VS Gene; 2007 Nov; 403(1-2):29-38. PubMed ID: 17870253 [TBL] [Abstract][Full Text] [Related]
33. Raising activity of Bacillus thuringiensis var. israelensis against Anopheles stephensi larvae by encapsulation in Tetrahymena pyriformis (Hymenostomatida:Tetrahymenidae). Manasherob R; Ben-Dov E; Margalit J; Zaritsky A; Barak Z J Am Mosq Control Assoc; 1996 Dec; 12(4):627-31. PubMed ID: 9046467 [TBL] [Abstract][Full Text] [Related]
35. Monitoring Bacillus thuringiensis-susceptibility in insect pests that occur in large geographies: how to get the best information when two countries are involved. Blanco CA; Perera OP; Boykin D; Abel C; Gore J; Matten SR; Ramírez-Sagahon JC; Terán-Vargas AP J Invertebr Pathol; 2007 Jul; 95(3):201-7. PubMed ID: 17499760 [TBL] [Abstract][Full Text] [Related]
36. Selection and heritability of resistance to Bacillus thuringiensis subsp kurstaki and transgenic cotton in Helicoverpa armigera (Lepidoptera: Noctuidae). Lu MG; Rui CH; Zhao JZ; Jian GL; Fan XL; Gao XW Pest Manag Sci; 2004 Sep; 60(9):887-93. PubMed ID: 15382503 [TBL] [Abstract][Full Text] [Related]
37. Laboratory and field tests of spray-dried and granular formulations of a Bacillus thuringiensis strain with insecticidal activity against the sugarcane borer. Rosas-García NM Pest Manag Sci; 2006 Sep; 62(9):855-61. PubMed ID: 16786544 [TBL] [Abstract][Full Text] [Related]
38. Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants. Ruiz de Escudero I; Estela A; Escriche B; Caballero P Appl Environ Microbiol; 2007 Jan; 73(1):337-40. PubMed ID: 17085712 [TBL] [Abstract][Full Text] [Related]
39. Novel formulations of Bacillus thuringiensis var. kurstaki: an eco-friendly approach for management of lepidopteran pests. Vimala Devi PS; Duraimurugan P; Poorna Chandrika KSV; Vineela V; Hari PP World J Microbiol Biotechnol; 2020 May; 36(5):78. PubMed ID: 32409941 [TBL] [Abstract][Full Text] [Related]
40. [The effects of reactive oxidants on Bacillus thuringiensis parasporal crystals]. Wang W; Qian C; Shen J; Yang S Wei Sheng Wu Xue Bao; 1999 Oct; 39(5):469-74. PubMed ID: 12555530 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]