These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 15282948)
61. Effect of Bacillus thuringiensis naturally colonising Brassica campestris var. chinensis leaves on neonate larvae of Pieris brassicae. Prabhakar A; Bishop AH J Invertebr Pathol; 2009 Mar; 100(3):193-4. PubMed ID: 19232351 [TBL] [Abstract][Full Text] [Related]
62. The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella. Raymond B; Sayyed AH; Wright DJ J Invertebr Pathol; 2006 Oct; 93(2):114-20. PubMed ID: 16905146 [TBL] [Abstract][Full Text] [Related]
63. Efficient screening and breeding of Bacillus thuringiensis subsp. kurstaki for high toxicity against Spodoptera exigua and Heliothis armigera. Zhang X; Liang Z; Siddiqui ZA; Gong Y; Yu Z; Chen S J Ind Microbiol Biotechnol; 2009 Jun; 36(6):815-20. PubMed ID: 19337765 [TBL] [Abstract][Full Text] [Related]
64. Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants. Kotkar HM; Sarate PJ; Tamhane VA; Gupta VS; Giri AP J Insect Physiol; 2009 Aug; 55(8):663-70. PubMed ID: 19450602 [TBL] [Abstract][Full Text] [Related]
65. Enhanced toxicity of Bacillus thuringiensis subspecies kurstaki and aizawai to black cutworm larvae (Lepidoptera: Noctuidae) with Bacillus sp. NFD2 and Pseudomonas sp. FNFD1. Mashtoly TA; Abolmaaty A; El-Zemaity Mel-S; Hussien MI; Alm SR J Econ Entomol; 2011 Feb; 104(1):41-6. PubMed ID: 21404837 [TBL] [Abstract][Full Text] [Related]
66. Bio-efficacy of chitinolytic Bacillus thuringiensis isolates native to northwestern Indian Himalayas and their synergistic toxicity with selected insecticides. Subbanna ARNS; Chandrashekara C; Stanley J; Mishra KK; Mishra PK; Pattanayak A Pestic Biochem Physiol; 2019 Jul; 158():166-174. PubMed ID: 31378353 [TBL] [Abstract][Full Text] [Related]
67. Identification and characterization of the Sudanese Bacillus thuringiensis and related bacterial strains for their efficacy against Helicoverpa armigera and Tribolium castaneum. Gorashi NE; Tripathi M; Kalia V; Gujar GT Indian J Exp Biol; 2014 Jun; 52(6):637-49. PubMed ID: 24956895 [TBL] [Abstract][Full Text] [Related]
68. Translocation of Bacillus thuringiensis in Phaseolus vulgaris tissues and vertical transmission in Arabidopsis thaliana. García-Suárez R; Verduzco-Rosas LA; Del Rincón-Castro MC; Délano-Frier JP; Ibarra JE J Appl Microbiol; 2017 Apr; 122(4):1092-1100. PubMed ID: 28129468 [TBL] [Abstract][Full Text] [Related]
69. Monitoring and adaptive resistance management in Australia for Bt-cotton: current status and future challenges. Downes S; Mahon R; Olsen K J Invertebr Pathol; 2007 Jul; 95(3):208-13. PubMed ID: 17470372 [TBL] [Abstract][Full Text] [Related]
70. Effects of Cry1Ac toxin of Bacillus thuringiensis and nuclear polyhedrosis virus of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on larval mortality and pupation. Liu X; Zhang Q; Xu B; Li J Pest Manag Sci; 2006 Aug; 62(8):729-37. PubMed ID: 16770833 [TBL] [Abstract][Full Text] [Related]
71. A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpa armigera) larvae. Srinivasan A; Giri AP; Harsulkar AM; Gatehouse JA; Gupta VS Plant Mol Biol; 2005 Feb; 57(3):359-74. PubMed ID: 15830127 [TBL] [Abstract][Full Text] [Related]
72. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Dubovskiy IM; Martemyanov VV; Vorontsova YL; Rantala MJ; Gryzanova EV; Glupov VV Comp Biochem Physiol C Toxicol Pharmacol; 2008 Jul; 148(1):1-5. PubMed ID: 18400562 [TBL] [Abstract][Full Text] [Related]
73. Characterization of a cry4Ba-type gene of Bacillus thuringiensis israelensis and evidence of the synergistic larvicidal activity of its encoded protein with Cry2A delta-endotoxin of B. thuringiensis kurstaki on Culex pipiens (common house mosquito). Zghal RZ; Tounsi S; Jaoua S Biotechnol Appl Biochem; 2006 Apr; 44(Pt 1):19-25. PubMed ID: 16309381 [TBL] [Abstract][Full Text] [Related]
74. Increased efficacy of Bacillus thuringiensis subsp. kurstaki in combination with tannic acid. Gibson DM; Gallo LG; Krasnoff SB; Ketchum RE J Econ Entomol; 1995 Apr; 88(2):270-7. PubMed ID: 7722082 [TBL] [Abstract][Full Text] [Related]
75. Negative effects of a nonhost proteinase inhibitor of ~19.8 kDa from Madhuca indica seeds on developmental physiology of Helicoverpa armigera (Hübner). Jamal F; Singh D; Pandey PK Biomed Res Int; 2014; 2014():202398. PubMed ID: 25298962 [TBL] [Abstract][Full Text] [Related]
76. The effect of seston on mortality of Simulium vittatum (Diptera: Simuliidae) from insecticidal proteins produced by Bacillus thuringiensis subsp. israelensis. Iburg JP; Gray EW; Wyatt RD; Cox JE; Fusco RA; Noblet R Environ Entomol; 2011 Dec; 40(6):1417-26. PubMed ID: 22217757 [TBL] [Abstract][Full Text] [Related]
77. Mortality Patterns of Simulium vittatum Larvae (Diptera: Simuliidae) Following Exposure to Insecticidal Proteins Produced by Bacillus thuringiensis var. israelensis. Iburg JP; Gray EW; Noblet R J Am Mosq Control Assoc; 2015 Mar; 31(1):44-51. PubMed ID: 25843175 [TBL] [Abstract][Full Text] [Related]
78. Laboratory evaluation of Bacillus thuringiensis (Vectobac WDG) against mosquito larvae, Culex pipiens and Culiseta longiareolata. Boudjelida H; Aïssaoui L; Bouaziz A; Smagghe G; Soltani N Commun Agric Appl Biol Sci; 2008; 73(3):603-9. PubMed ID: 19226801 [TBL] [Abstract][Full Text] [Related]
79. Bio-potency of a 21 kDa Kunitz-type trypsin inhibitor from Tamarindus indica seeds on the developmental physiology of H. armigera. Pandey PK; Jamal F Pestic Biochem Physiol; 2014 Nov; 116():94-102. PubMed ID: 25454525 [TBL] [Abstract][Full Text] [Related]
80. Bacillus thuringiensis potency bioassays against Heliothis armigera, Earias insulana, and Spodoptera littoralis larvae based on standardized diets. Navon A; Klein M; Braun S J Invertebr Pathol; 1990 May; 55(3):387-93. PubMed ID: 2351843 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]