These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1528422)

  • 1. Reactions of neurons of the posterior ventral nucleus of the thalamus of the rat during movements of the vibrissae.
    Paleev GI
    Neurosci Behav Physiol; 1992; 22(4):310-4. PubMed ID: 1528422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The neuronal reactions of the posterior ventral thalamic nucleus in the rat during vibrissal movements].
    Paleev GI
    Fiziol Zh SSSR Im I M Sechenova; 1991 Feb; 77(2):31-6. PubMed ID: 1652514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-correlation analysis of a recurrent inhibitory circuit in the rat thalamus.
    Shosaku A
    J Neurophysiol; 1986 May; 55(5):1030-43. PubMed ID: 3711965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptive-field properties of rat ventral posterior medial neurons before and after selective kainic acid lesions of the trigeminal brain stem complex.
    Rhoades RW; Belford GR; Killackey HP
    J Neurophysiol; 1987 May; 57(5):1577-600. PubMed ID: 3585480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal organization of rat thalamus for processing information of vibrissal movements.
    Sumitomo I; Iwama K
    Brain Res; 1987 Jul; 415(2):389-92. PubMed ID: 3607507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thalamic processing of vibrissal information in the rat: II. Morphological and functional properties of medial ventral posterior nucleus and posterior nucleus neurons.
    Chiaia NL; Rhoades RW; Fish SE; Killackey HP
    J Comp Neurol; 1991 Dec; 314(2):217-36. PubMed ID: 1723993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrissa-responsive neurons of the superior colliculus that project to the intralaminar thalamus of the rat.
    Grunwerg BS; Krauthamer GM
    Neurosci Lett; 1990 Mar; 111(1-2):23-7. PubMed ID: 2336187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coding of stimulus frequency by latency in thalamic networks through the interplay of GABAB-mediated feedback and stimulus shape.
    Golomb D; Ahissar E; Kleinfeld D
    J Neurophysiol; 2006 Mar; 95(3):1735-50. PubMed ID: 16267113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response properties and topography of vibrissa-sensitive VPM neurons in the rat.
    Ito M
    J Neurophysiol; 1988 Oct; 60(4):1181-97. PubMed ID: 3193152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus.
    Diamond ME; Armstrong-James M; Ebner FF
    J Comp Neurol; 1992 Apr; 318(4):462-76. PubMed ID: 1578013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of high frequency activity in the somatosensory thalamus of rats in vivo results in long-term potentiation of responses in SI cortex.
    Lee SM; Ebner FF
    Exp Brain Res; 1992; 90(2):253-61. PubMed ID: 1397139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projection Patterns of Corticofugal Neurons Associated with Vibrissa Movement.
    Shibata KI; Tanaka T; Hioki H; Furuta T
    eNeuro; 2018; 5(5):. PubMed ID: 30406196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of neuropeptide Y type 2 receptor activation on responses of rat ventral posteromedial thalamus neurons to surround vibrissae and trigeminal subnucleus interpolaris stimulation.
    Chiaia NL; Zhang Y; Chen M; Zhang S; Rhoades RW
    Somatosens Mot Res; 1997; 14(4):295-300. PubMed ID: 9443369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal frequency of whisker movement. I. Representations in brain stem and thalamus.
    Sosnik R; Haidarliu S; Ahissar E
    J Neurophysiol; 2001 Jul; 86(1):339-53. PubMed ID: 11431515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High responsiveness and direction sensitivity of neurons in the rat thalamic reticular nucleus to vibrissa deflections.
    Hartings JA; Temereanca S; Simons DJ
    J Neurophysiol; 2000 May; 83(5):2791-801. PubMed ID: 10805677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional (14C) 2-deoxyglucose uptake during vibrissae movements evoked by rat motor cortex stimulation.
    Sharp FR; Evans K
    J Comp Neurol; 1982 Jul; 208(3):255-87. PubMed ID: 7119161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel Inhibitory and Excitatory Trigemino-Facial Feedback Circuitry for Reflexive Vibrissa Movement.
    Bellavance MA; Takatoh J; Lu J; Demers M; Kleinfeld D; Wang F; DeschĂȘnes M
    Neuron; 2017 Aug; 95(3):673-682.e4. PubMed ID: 28735746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional organization of thalamic projections to the motor cortex. An anatomical and electrophysiological study in the rat.
    Cicirata F; Angaut P; Cioni M; Serapide MF; Papale A
    Neuroscience; 1986 Sep; 19(1):81-99. PubMed ID: 3024065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Balancing bilateral sensory activity: callosal processing modulates sensory transmission through the contralateral thalamus by altering the response threshold.
    Li L; Ebner FF
    Exp Brain Res; 2006 Jul; 172(3):397-415. PubMed ID: 16429268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of GABA-mediated inhibition in the rat ventral posterior medial thalamus. I. Assessment of receptive field changes following thalamic reticular nucleus lesions.
    Lee SM; Friedberg MH; Ebner FF
    J Neurophysiol; 1994 May; 71(5):1702-15. PubMed ID: 8064343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.