These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 15285)

  • 1. Differential motor effects of intraventricular infusion of morphine and etonitazene.
    Shizgal P; Sklar LS; Brown ZW; Amit Z
    Pharmacol Biochem Behav; 1977 Jan; 6(1):17-20. PubMed ID: 15285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explosive motor behavior, rigidity and periaqueductal gray lesions.
    Blair R; Liran J; Cytryniak H; Shizgal P; Amit Z
    Neuropharmacology; 1978 Mar; 17(3):205-9. PubMed ID: 643164
    [No Abstract]   [Full Text] [Related]  

  • 3. Schedule-induced oral self administration of etonitazene.
    McMillan DE; Leander JD
    Pharmacol Biochem Behav; 1976 Feb; 4(2):137-41. PubMed ID: 4820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naloxone's antagonism of rigidity but not explosive motor behavior: possible evidence for two types of mechanisms underlying the actions of opiates and opioids.
    Blair R; Cytryniak H; Shizgal P; Amit Z
    Behav Biol; 1978 Sep; 24(1):24-31. PubMed ID: 32867
    [No Abstract]   [Full Text] [Related]  

  • 5. Development of tolerance and sensitization to different opioid agonists in rats.
    Grecksch G; Bartzsch K; Widera A; Becker A; Höllt V; Koch T
    Psychopharmacology (Berl); 2006 Jun; 186(2):177-84. PubMed ID: 16572262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative contribution of the dorsal raphe nucleus and ventrolateral periaqueductal gray to morphine antinociception and tolerance in the rat.
    Campion KN; Saville KA; Morgan MM
    Eur J Neurosci; 2016 Nov; 44(9):2667-2672. PubMed ID: 27564986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Etonitazene: an opioid selective for the mu receptor types.
    Moolten MS; Fishman JB; Chen JC; Carlson KR
    Life Sci; 1993; 52(18):PL199-203. PubMed ID: 8097861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dose-dependent conditioned place preference produced by etonitazene and morphine.
    Sala M; Braida D; Calcaterra P; Leone MP; Gori E
    Eur J Pharmacol; 1992 Jun; 217(1):37-41. PubMed ID: 1356799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation by morphine of aversive-like behavior induced by GABAergic blockade in periaqueductal gray or medial hypothalamus.
    Jenck F; Moreau JL; Karli P
    Pharmacol Biochem Behav; 1988 Sep; 31(1):193-200. PubMed ID: 3252250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-dependent effects of morphine injected into the periaqueductal gray area of mice.
    Nunes-de-Souza RL; Graeff FG; Siegfried B
    Braz J Med Biol Res; 1991; 24(3):291-9. PubMed ID: 1823243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biochemical and behavioral effects of phospholipase A2 and morphine microinjections in the periaqueductal gray of the rat.
    Reichman M; Abood LG; Costanzo M
    Life Sci; 1985 Feb; 36(6):515-23. PubMed ID: 3968975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effect of central versus parenteral administration of morphine sulfate on regional concentrations of reduced glutathione in rat brain.
    Goudas LC; Carr DB; Maszczynska I; Marchand JE; Wurm WH; Greenblatt DJ; Kream RM
    Pharmacology; 1997 Feb; 54(2):92-7. PubMed ID: 9088042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of intrathecally infused morphine and lidocaine in rats (part I): synergistic antinociceptive effects.
    Saito Y; Kaneko M; Kirihara Y; Sakura S; Kosaka Y
    Anesthesiology; 1998 Dec; 89(6):1455-63. PubMed ID: 9856720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central administration of morphine inhibits brain and liver ornithine decarboxylase activity in neonatal rats: involvement of transcription- and non-transcription-dependent mechanisms.
    Bartolome JV; Alicke B; Bartolome MB
    Eur J Pharmacol; 1997 Jul; 331(2-3):145-53. PubMed ID: 9274973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral activating effects of opiates and opioid peptides.
    Browne RG; Segal DS
    Biol Psychiatry; 1980 Feb; 15(1):77-86. PubMed ID: 6101965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphine sex-dependently induced place conditioning in adult Wistar rats.
    Karami M; Zarrindast MR
    Eur J Pharmacol; 2008 Mar; 582(1-3):78-87. PubMed ID: 18191832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of central opioid receptor subtypes in morphine-induced alterations in peripheral lymphocyte activity.
    Mellon RD; Bayer BM
    Brain Res; 1998 Apr; 789(1):56-67. PubMed ID: 9602057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RGS14 prevents morphine from internalizing Mu-opioid receptors in periaqueductal gray neurons.
    Rodríguez-Muñoz M; de la Torre-Madrid E; Gaitán G; Sánchez-Blázquez P; Garzón J
    Cell Signal; 2007 Dec; 19(12):2558-71. PubMed ID: 17825524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of intrathecally infused morphine and lidocaine in rats (part II): effects on the development of tolerance to morphine.
    Saito Y; Kaneko M; Kirihara Y; Sakura S; Kosaka Y
    Anesthesiology; 1998 Dec; 89(6):1464-70. PubMed ID: 9856721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Etonitazine-induced rigidity and its antagonism by centrally acting muscle relaxants.
    Barnett A; Goldstein J; Fiedler E; Taber R
    Eur J Pharmacol; 1975 Jan; 30(1):23-8. PubMed ID: 235435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.