These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 15285259)

  • 21. A 3D finite-difference BiCG iterative solver with the Fourier-Jacobi preconditioner for the anisotropic EIT/EEG forward problem.
    Turovets S; Volkov V; Zherdetsky A; Prakonina A; Malony AD
    Comput Math Methods Med; 2014; 2014():426902. PubMed ID: 24527060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Finite-Difference Solution for the EEG Forward Problem in Inhomogeneous Anisotropic Media.
    Cuartas Morales E; Acosta-Medina CD; Castellanos-Dominguez G; Mantini D
    Brain Topogr; 2019 Mar; 32(2):229-239. PubMed ID: 30341590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dipole estimation errors due to differences in modeling anisotropic conductivities in realistic head models for EEG source analysis.
    Hallez H; Vanrumste B; Van Hese P; Delputte S; Lemahieu I
    Phys Med Biol; 2008 Apr; 53(7):1877-94. PubMed ID: 18364544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of white matter anisotropy on EEG source localization: an experimental study.
    Lee WH; Liu Z; Mueller BA; Lim K; He B
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2923-5. PubMed ID: 19964792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An advanced boundary element method (BEM) implementation for the forward problem of electromagnetic source imaging.
    Akalin-Acar Z; Gençer NG
    Phys Med Biol; 2004 Nov; 49(21):5011-28. PubMed ID: 15584534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation (TMS).
    Htet AT; Saturnino GB; Burnham EH; Noetscher GM; Nummenmaa A; Makarov SN
    J Neural Eng; 2019 Apr; 16(2):024001. PubMed ID: 30605893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling.
    Wolters CH; Anwander A; Tricoche X; Weinstein D; Koch MA; MacLeod RS
    Neuroimage; 2006 Apr; 30(3):813-26. PubMed ID: 16364662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity.
    Medani T; Garcia-Prieto J; Tadel F; Antonakakis M; Erdbrügger T; Höltershinken M; Mead W; Schrader S; Joshi A; Engwer C; Wolters CH; Mosher JC; Leahy RM
    Neuroimage; 2023 Feb; 267():119851. PubMed ID: 36599389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A computationally efficient method for accurately solving the EEG forward problem in a finely discretized head model.
    Neilson LA; Kovalyov M; Koles ZJ
    Clin Neurophysiol; 2005 Oct; 116(10):2302-14. PubMed ID: 16125461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hybrid boundary element-finite element approach for solving the EEG forward problem in brain modeling.
    Dayarian N; Khadem A
    Front Syst Neurosci; 2024; 18():1327674. PubMed ID: 38764980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of tissue anisotropy on the EEG inverse problem.
    Cook MJ; Koles ZJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4563-6. PubMed ID: 19163731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite-element neural networks for solving differential equations.
    Ramuhalli P; Udpa L; Udpa SS
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1381-92. PubMed ID: 16342482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Smoothed finite element methods in simulation of active contraction of myocardial tissue samples.
    Martonová D; Holz D; Duong MT; Leyendecker S
    J Biomech; 2023 Aug; 157():111691. PubMed ID: 37441914
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational aspects of the EEG forward problem solution for real head model using finite element method.
    Rytsar R; Pun T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():829-32. PubMed ID: 18002084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CutFEM forward modeling for EEG source analysis.
    Erdbrügger T; Westhoff A; Höltershinken M; Radecke JO; Buschermöhle Y; Buyx A; Wallois F; Pursiainen S; Gross J; Lencer R; Engwer C; Wolters C
    Front Hum Neurosci; 2023; 17():1216758. PubMed ID: 37694172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensitivity of the Projected Subtraction Approach to Mesh Degeneracies and Its Impact on the Forward Problem in EEG.
    Beltrachini L
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):273-282. PubMed ID: 29993440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A smoothed finite element method for analysis of anisotropic large deformation of passive rabbit ventricles in diastole.
    Jiang C; Liu GR; Han X; Zhang ZQ; Zeng W
    Int J Numer Method Biomed Eng; 2015 Jan; 31(1):e02697. PubMed ID: 25382158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conventional and reciprocal approaches to the inverse dipole localization problem of electroencephalography.
    Finke S; Gulrajani RM; Gotman J
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):657-66. PubMed ID: 12814232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of white matter inhomogeneous anisotropy on EEG forward computing.
    Bashar R; Li Y; Wen P
    Australas Phys Eng Sci Med; 2008 Jun; 31(2):122-30. PubMed ID: 18697703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Handling anisotropic conductivities in the EEG forward problem with a symmetric formulation.
    Pillain A; Rahmouni L; Andriulli F
    Phys Med Biol; 2019 Feb; 64(3):035022. PubMed ID: 30577034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.